
A PROBABILISTIC ANALOGUE OF THE FOURIER EXTENSION CONJECTURE

ERIC T. SAWYERy

Abstract. The Fourier extension conjecture in n dimensions is

kTSfkLp(�n) � C kfkLp(S) ; p >
2n

n� 1
;

where TSf (�) �
R
S e

�i�(x)��f (x) dx, S � Bn�1
�
0; 1

2

�
� Rn�1, �(x) =

�
x;
q
1� jxj2

�
and �n is Lebesgue

measure on Rn. We prove that the following probabilistic analogue of the Fourier extension conjecture,�
E�
2G

TSAS�;�a f
p
Lp(�n)

� 1
p

� C kfkLp(S) ;

holds if and only if p > 2n
n�1 . The operator E

�

2G
averages over all involutive smooth Alpert multipliers

AS�;�a = S�;� AaS�1�;� , where � > n
2
and Aa multiplies the Alpert projections of f by sequences of �1

determined by a 2 2G = f�1; 1gG , where G is the grid of dyadic subcubes of S. The measure � is the
standard probability measure on 2G , and S�;� is the bounded invertible linear operator taking the Alpert
wavelet hI;� to its smooth counterpart h

�
I;�.

To prove this probabilistic analogue of the extension conjecture for the operators AS�;�a , we use frames
for Lp consisting of smooth compactly supported Alpert wavelets having a large number � > n

2
of vanishing

moments, along with sharp estimates on oscillatory integrals and probabilistic interpolation of L2 and L4

estimates, as part of a two weight testing strategy using pigeonholing via the uncertainty principle to de�ne
various subforms as pioneered by Nazarov, Treil and Volberg. It is crucial to use probability in our method
to obtain L4 estimates with the correct decay when dealing with resonant subforms.
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1. Introduction

In this paper we consider a probabilistic analogue of the Fourier extension problem

(1.1)
�Z

Rn
jF (f�n�1) (�)jq d�

� 1
q

� C

�Z
Sn�1

jf (x)jp d�n�1 (x)
� 1

p

;

for 1 � p; q < 1 and where �n�1 is surface measure on the sphere Sn�1, and F (�) �
R
Rn e

�ix��d� (x)
denotes the Fourier transform of the measure �.

1.1. The probabilistic extension problem. Let � (x) �
�
x;

q
1� jxj2

�
2 Sn�1 be the standard para-

metization of the northern hemisphere of Sn�1. Let S be a cube of side length 1 centered at the origin in
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Rn�1 and de�ne

TSf (�) �
Z
S

e�i�(x)��f (x) dx; � 2 Rn;

so that TSf = F�� (f�n�1) where ��� denotes the pushforward of a measure � under the map �. Then the
Fourier extension problem is equivalent to boundedness of TS ,

kTSfkLq(�n) � C kfkLp(S) :

Letf4I;�gI2D: I�S be the family of Alpert projections 4I;� =
P
a2�n�1



f; haI;�

�
haI;� on L2 (S) as in

Theorem 4. For a = faIgI2D 2 f1;�1g
D and f 2 Lp (S), de�ne the involutive Alpert multiplier Aa by

Aaf �
X
I2D

aI 4I;� f;

which is
P
I2D �4I;� f for a choice of � determined by a.

Let S�;� be the bounded invertible linear map on Lp given in Theorem 4, that takes Alpert wavelets haI;�
to their smooth counterparts ha;�I;� = haI;� � ��`(I). For a = faIgI2G 2 f1;�1g

G and f 2 Lp (S), de�ne the
involutive smooth Alpert multiplier

AS�;�a f =
X
I2D

�4�
I;� f

by conjugating Aa with the bounded invertible map S�;�, i.e.

AS�;�a f � S�;�AaS�1�;�f = S�;�
X
I2D

aI


S�1�;�f; hI;�

�
hI;� =

X
I2D

aI


S�1�;�f; hI;�

�
h�I;� =

X
I2D

aI 4�
I;� f:

Note that both Aa and AS�;�a are involutions, A2a =
�
AS�;�a

�2
= Id.

Then we identify 2G and f1;�1gG and equip 2G with the probability measure � that satis�es,

�� (E) � �
��
E j E � 2�

	�
=
jEj
j2�j ; E � 2� with � � G �nite;

where jF j denotes cardinality of a �nite subset of G, and �
��
E j E � 2�

	�
is the conditional probability of

E given that E � 2� (here 2� is a set of �-measure zero, and see e.g. [Hyt] for a construction of such a
measure �). We de�ne the expectation operator E�

2G
by

E�
2G
F �

Z
2G
F (a) d� (a)

for F a nonnegative function on 2G = f1;�1gG .
The probabilistic extension problem is to decide when the inequality,

(1.2) E�
2G

TSAS�;�a f

Lq(�n)

=

Z
2G

TSAS�;�a f

Lq(�n)

d� (a) � C kfkLp(S) ;

holds, which asks roughly speaking, if the extension inequality (1.1) holds when averaged over all involutive
smooth Alpert multipliers, which is of course a much weaker assertion than (1.1) itself. However, the
probabilistic analogue (1.2) fails for the same pairs (p; q) that (1.1) is currently known to fail for.
Finally, we point out that (1.2) is equivalent to the following formulation, not explicitly used in this paper,

expressed in terms of the Fourier transform on the sphere,

E�
2G

�Z
Rn

���F �h�AS�;�a

�
f � ��1

��
� �
i
�n�1

�
(�)
���q d�� 1

q

� C

 Z
Sn�1\�(S)

jf (z)jp d�n�1 (z)
! 1

p

:
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1.2. The main results and a brief history. The following Fourier extension conjecture arose from un-
published work of E. Stein in 1967, see e.g. [Ste2, see the Notes at the end of Chapter IX, p. 432, where
Stein proved the restriction conjecture for 1 � p < 4n

3n+1 ] and [Ste],

(1.3)
�Z

Rn
jF (f�n�1)jp d�

� 1
p

� C

�Z
Sn�1

jf (x)jp d�n�1 (x)
� 1

p

; for
2n

n� 1 < p � 1;

which is of course equivalent to the bilinear form inequalities,

jhF (f�n�1) ; gij . kfkLp(�n�1) kgkLp0 (Rn) ;
jhTSf; gij . kfkLp(S) kgkLp0 (Rn) :

Our probabilistic analogue of (1.3) is the following conjecture.

Conjecture 1. For � > n
2 and notation as above,

(1.4) E�
2G

TSAS�;�a f

Lp(�n)

. kfkLp(S) ; if and only if
2n

n� 1 < p � 1:

Theorem 2 (Probabilistic extension conjecture). The probabilistic Fourier extension inequality (1.4) holds
in all dimensions n � 2.
Here the implied constant in . depends only on harmless quantities determined by context, which in the

display (1.4) are n and p.
Sections 2 through 10 are devoted to proving Theorem 2. Some concluding remarks are made in Section

11.

Acknowledgement 3. I am indebted to Hong Wang and Ruixiang Zhang for pointing out serious gaps in
earlier versions of this paper.

There is a long history of progress on the Fourier extension conjecture in the past half century, and we
refer the reader to the excellent survey articles by Thomas Wol¤ [Wol], Terence Tao [Tao] and Betsy Stovall
[Sto] for this history up to 2019, as well as for connections with related conjectures and topics.
Somewhat imprecisely, and often ignoring p, the chronology of improvements for the extension conjecture

(1.1) in this period, and up to 2018 is as follows. Let �n � 2n
n�1 = 2 +

2
n�1 .

q > �n +
2n

n� 1 (Stein 1967 [Ste2]) ;

q > �2; for n = 2 (Fe¤erman 1970 [Fef]; Carleson, Sjölin 1972 [CaSj]; Zygmund 1974 [Zyg]) ;

q > �n +
2

n� 1 ; (Stein, Tomas 1975 [Tom]) ; q > �n +
2

n� 1 � "n (Bourgain 1991[Bou]) ;

q > 2 +
4n+ 8

n2 + n� 1 (Wol¤ 1995 [Wol2]) ; q � 2 + 4n+ 8

n2 + n� 1 ; (Moyua, Vargas, Vega 1996 [MoVaVe]) ;

q > �n +
2

n� 1 (Tao 2003 [Tao4]) ;

q > 2 +
12

4n� 3 if n � 0; 2 +
3

n� 1 if n � 1; 2 +
6

2n� 1 if n � 2 (mod 3, p =1) ; (Bourgain, Guth 2018 [BoGu]) :

The following
�
1
p ;

1
q

�
-rectangle for boundedness of the extension operator might help visualize this progres-

sion of positive results:�
0; 12
�
F F F F F F C F F F F F F F

�
1; 12
�

F F F F F F F F F F F F F F F F
F F F F F A F F F F F F F F F F

� B F F F F F F F F
� � F F F F F F

� � F F F F
� � F F

(0;0) (1;0)

A =

�
n� 1
2n

;
n� 1
2n

�
and B =

�
1

2
;
n� 1
2n+ 2

�
and C =

�
1

2
;
1

2

�
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The region marked with F is where boundedness of the extension operator (1.1) is known to fail, i.e. on and
above the line 1

q =
n�1
2n , and strictly above the Knapp line joining A to (1; 0). The probabilistic analogue

(1.2) also fails for these pairs
�
1
p ;

1
q

�
, as is shown below. The point B on the Knapp line is the Stein-

Tomas point, where boundedness is known from their 1975 result. Since the set of points
�
1
p ;

1
q

�
for which

boundedness holds is both left-�lled by embedding of Lp spaces on the sphere, and convex by interpolation,
we see that as of 1975, the region consisting of the line joining B to (1; 0), and everything to the left of it,

was known to be bounded for the extension operator. The point
�

1
2+ 4

n

; 1
2+ 4

n

�
was added by Tao [Tao4] in

2003, and points slightly better than
�

1
2+ 3

n

; 1
2+ 3

n

�
were added by Bourgain and Guth [BoGu, BoGu] in 2018.

Note also that any progress along the open diagonal line joining (0; 0) and A, such as showing that
�
1
p ;

1
p

�
is bounded, yields boundedness for the convex hull of

�
1
p ;

1
p

�
and the line 1

q = 0, as well as all points to the

left. Of course, even if the open diagonal segment joining (0; 0) and A was known to be bounded, this would
still leave the open segment of the Knapp line joining A to B.
Our probabilistic theorem shows that the boundedness region for the probabilistic extension conjecture

includes all points not already eliminated for the extension conjecture, except possibly for the open segment
of the Knapp line joining A to B.
See also the more recent papers of Larry Guth [Gut] on polynomial partitioning, Ciprian Demeter [Dem]

on decouplings, Jonathan Hickman and Keith M. Rogers on polynomial Wol¤ axioms, Camil Muscaru and
Itamar Oliveira [MuOl] on parabolic restriction, Alex Iosevich and Ruixiang Zhang on weighted (lattice
point) restriction [IoZh], and Izabella Laba and Hong Wang on restriction to Cantor sets [LaWa], along with
the references given there and in [Wol], [Tao] and [Sto], to fundamental work done by additional authors to
those already mentioned, too numerous to recall here. In particular we mention that the best result to date
in R3 is p > 3 + 3

14 , due to Hong Wang [Wan] using Kakeya and decoupling methods.
Moreover, the conditions q � p0 n+1n�1 and

2n
n�1 < q are necessary for the extension inequality (1.1) to hold,

see e.g. [Tao]. The same arguments show that these conditions on p and q are necessary for the probabilistic
analogue (1.2) to hold, upon considering individual smooth Alpert wavelets h�I;� (see below for de�nitions).
Since �n�1 is a �nite measure, embedding and interpolation with the trivial L1 ! L1 bound, together
with Theorem 2, prove the probabilistic extension inequality for this range of exponents, except for the
range q = p0 n+1n�1 and 1 < p < 2n

n�1 . Since the Stein Tomas result [Tom] captures the subcase of (1.1) when
1 � p � 2, this leaves only q = p0 n+1n�1 and 2 < p < 2n

n�1 open in the probabilistic extension conjecture.

1.3. Quick overview of the proof and smooth Alpert wavelets. We begin with a short and informal
narrative.

Narrative: In the theory of nonhomogeneous harmonic analysis, and especially that of two weight
norm inequalities for the Hilbert transform, Nazarov, Treil and Volberg initiated the systematic
use of weighted Haar wavelets to analyze boundedness. The Hilbert transform has kernel 1

x�� ,
and thus the action of a Haar wavelet against such a kernel typically has geometric decay away
from the origin, which permits �error�o¤ diagonal terms to be controlled. This two weight theory
has concentrated mainly on the Hilbert space case p = 2 in the past couple of decades, but more
recently Lp estimates and square functions have attracted attention, especially with the recent work
of Hytönen and Vuorinen.

At this point it becomes conceivable that square function and two weight techniques might be
applicable to two weight Lp norm inequalities for the Fourier transform - the most famous of which
is the restriction problem, equivalent to a norm inequality with measures d�n�1 and d�n in Rn,

kF (f�n�1)kLp(�n) . kfkLp(�n�1) :

However, the kernel K (x; �) = e�ix�� of the Fourier transform F is purely oscillatory with no decay
at all, but this is o¤set by the curvature of the support of �n�1, that produces decay from the prin-
ciple of stationary phase. Moreover, the action of a Haar wavelet against this kernel will be small
if there is little variation of the kernel over the support of the wavelet (i.e. long wavelength), since
the wavelet has vanishing mean, but this gain is limited by the absence of higher order vanishing
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moments in a Haar wavelet.

Addressing this defect, Alpert constructed wavelets with similar properties to those of Haar, but
with additional vanishing moments that confer extra geometric gain. But even with Alpert wavelets
in place of Haar wavelets, there is no geometric gain when the wavelength of the kernel is small
compared to the size of the wavelet, due to the abrupt cuto¤s in the dyadic construction of these
wavelets.

In this paper we construct smooth Alpert wavelets that permit geometric decay when the wavelengths
are small, i.e. when there is su¢ cient oscillation of the kernel over the support of the wavelet to
permit gain from integration by parts. Thus we will have gain except in the case of resonance, when
there is neither su¢ cient smoothness nor oscillation in the restriction of the kernel to the support
of either wavelet. In these resonant situations, we must appeal to probability in order to obtain the
desired L4 bound needed for interpolation. The remainder of the paper holds without the interven-
tion of probability.

Our proof of the probabilistic Fourier extension conjecture uses some techniques arising in the two weight
testing theory of operator norms, [NTV4], [Vol], [LaSaShUr3], [SaShUr7], [AlSaUr] and [SaWi], that were
in turn based on older work with roots in [FeSt], [DaJo], [Saw] and [Saw3], and followed by many other
papers as well, such as [Hyt], [LaWi], [SaShUr12] and [HyVu] to mention just a few1. One of the main
new ingredients used here is the construction of compactly supported smooth frames in Lp with derivative
estimates adapted to the support, and as many vanishing moments as we wish. In fact, we will show that the
wavelets ha;�I;� in the following theorem, can be constructed in the spirit of symbol smoothing, as appropriate
convolutions of a certain approximate identity with the Alpert wavelets in [Alp], see also their weighted
versions in [RaSaWi].
For the proof of the probabilistic extension conjecture, we decompose the Fourier bilinear form

hF (f�n�1) ; giRn =
Z
Rn
F (f�n�1) (�) g (�) d� =

Z
Rn
F
�
�� ef�n�1� (�) g (�) d�;

where ef = f � � is the pullback of f to S � Rn�1, into a �nite sum of subforms

BP (f; g) �
X

(I;J)2P

D
F
�
4n�1;�
I;�

ef� ;4n;�
J;�g

E
Rn

where P is a collection of pairs of dyadic cubes I in Rn�1 and J in Rn, and where 4n�1;�
I;� and 4n;�

J;� are
smooth Alpert pseudoprojections in Rn�1 and Rn respectively. This decomposition into subforms follows
that used by Nazarov, Treil and Volberg in the setting of singular integrals with weighted Haar wavelets,
but using the uncertainty principle to compare sizes of cubes here. There are four main subforms, the below
Bbelow (f; g), above Babove (f; g), upper disjoint B

upper
disjoint (f; g) and lower disjoint B

lower
disjoint (f; g) subforms. The

�rst two subforms are handled by the classical methods of integration by parts and stationary phase, but
also use the smoothness and moment vanishing properties of the Alpert wavelets constructed in the next
theorem, while the third form also uses tangential integration by parts.
Finally, the fourth and most challenging subform, namely the lower disjoint form2, is handled using

properties of smooth Alpert wavelets with expectation taken over involutive smooth Alpert multipliers.
While the deterministic form estimates for the previous three forms imply corresponding deterministic norm
estimates by duality, this is no longer true for the probabilistic estimates we obtain, and it is important that
we obtain the stronger probabilistic norm estimates in these cases. In fact, we will obtain L2 and average

1Some of the deepest results in testing theory, namely the good/bad machinery of Nazarov, Treil and Volberg in e.g. [NTV4],
the functional energy from [LaSaShUr3], the two weight inequalities for Poisson integrals from [Saw3], and the upside down
corona and recursion from Lacey [Lac], are not used here. The main reasons for this are the lack of �edge e¤ects� in smooth
Alpert wavelets, the lack of a paraproduct/stopping form decomposition, and of course that the measures are �nice�: surface
measure on the sphere and Lebesgue measure. On the other hand we make extensive use of pigeonholing into bilinear subforms
according to the uncertainty principle, and then applying square function techniques for Alpert frames.

2challenging because of the resonance that arises when the cubes I and J are appropriately positioned and sized, with the
consequence that neither integration by parts nor moment vanishing can be put to use. In fact, it was precisely this di¢ culty
that led to the serious gap in an earlier version v4 of this paper, and which was pointed out to the author by Hong Wang and
Ruixiang Zhang.



PROBABILISTIC FOURIER EXTENSION 7

L4 norm estimates for smooth Alpert pseudoprojections (essentially because these spaces have the upper
majorant property), which can then be interpolated to obtain the required norm bounds. However, this
argument fails without expectation, and so fails to obtain the Fourier extension conjecture, whose attack
requires more sophisticated techniques. See Proposition 29, and Lemmas 30 and 31 below.
Here is the smooth compactly supported frame of wavelets for Lp that we will use3.

Theorem 4. Let n; � 2 N with � > n
2 , and � > 0 be su¢ ciently small depending on n and �. Then there

are a bounded invertible linear map S�;� : Lp ! Lp (1 < p <1) satisfying
(1.5) kId�S�;�kLp!Lp � Cn;p� ;

and �wavelets�
�
haI;�

	
I2D; a2�n

and
n
ha;�I;�

o
I2D; a2�n

(with �n a �nite index set depending only on � and

n), and corresponding projections and pseudoprojections f4I;�gI2D and
n
4�
I;�

o
I2D

de�ned by

4I;�f �
X
a2�n



f; haI;�

�
haI;� and 4

�
I;� f �

X
a2�n

D
(S�;�)

�1
f; haI;�

E
ha;�I;� ;

satisfying
(1) the standard properties,haI;�L2 =

ha;�I;�
L2
= 1;(1.6)

SupphaI;� � I and Suppha;�I;� � (1 + �) I;rmha;�I;�1 � Cm

�
1

�` (I)

�m
1p
jIj
; for all m � 0;Z

haI;� (x)x
�dx =

Z
ha;�I;� (x)x

�dx = 0; for all 0 � j�j < �:

(2) and for each a 2 �n the wavelets haI;� and h
a;�
I;� are translations and L

2-dilations of the unit wavelets
haQ0;�

and ha;�Q0;�
respectively, where Q0 = [0; 1)

n is the unit cube in Rn,

(1.7) haI;� =

s
jQ0j
jIj h

a
Q0;� � 'I and h

a;�
I;� =

s
jQ0j
jIj h

a;�
Q0;�

� 'I ;

where 'I : I ! Q0 is the a¢ ne map taking I one-to-one and onto Q0,
(3) and for all 1 < p <1,

f =
X

I2D; a2�n

4a
I;�f =

X
I2D; a2�n

4a;�
I;�f; for f 2 Lp \ L2;(1.8)


0@ X
I2D; a2�n

��4a
I;�f

��21A 1
2


Lp(�)

�


0@ X
I2D; a2�n

���4a;�
I;�f

���2
1A 1

2


Lp(�)

� kfkLp ; for f 2 Lp \ L2;

(4) and for all I 2 D,
haQ;� (x) = ha;�Q;� (x) ; for x 2 Rn n H� (Q) ;

where H� (Q) is the �-halo of the skeleton of Q de�ned in (2.4) below.
(5) and �nally, the unsmoothed operators 4I;� are self-adjoint orthogonal projections4,

(1.9) 4I;�4J;� =

�
4I;� if I = J
0 if I 6= J

:

Remark 5. This theorem shows that the collection of �almost�L2 projections
n
4�;a
I;�

o
I2D; a2�n

is a �frame�

for the Banach space Lp, 1 < p < 1. The case � = 0 of (1.8) was obtained in the generality of doubling
measures � in [SaWi].

3This particular theorem does not appear to be in the literature on frames.
4The operators 4�

I;� are neither self-adjoint, projections nor orthogonal, but come close as we will see.
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1.3.1. Organization of the paper. In the next section we will construct and prove the required properties
of smooth Alpert wavelets, and in Section 3 we introduce the extension operator and recall what we need
regarding stationary phase. This material is well-known but we repeat it here due to the precision of the
error estimates we need. In Section 4 we discuss the initial wavelet decompositions into various subforms and
describe the classical and well-known decay principles we use. Then in Section 5 we turn to the interpolation
of L2 and L4 estimates using probability. Then in Sections 6, 7 and 8 we will control the below, above and
upper disjoint forms respectively in the deterministic sense. Then in Section 9 we will use probability to
control the lower disjoint form by averaging over involutive smooth Alpert multipliers. Then we collect these
results to �nish the proof of the probabilistic Fourier extension theorem in Section 10, and in Section 11 we
make some concluding comments.

1.4. The initial setup. Fix a small cube S0 in Rn�1 with side length a negative power of 2, and such that
there is a translation G of the standard grid on Rn�1 with the property that S0 2 G, the grandparent �(2)G S0

of S0 has the origin as a vertex, and S0 is an interior grandchild of S � �
(2)
G S0, so that

(1.10) S0; S 2 G with S0 �
1

2
S.

In particular, we will use this construction later in the Standard Reduction 3 of the main bilinear inequality.
Then parameterize a patch of the sphere Sn�1 in the usual way, i.e. � : S ! Sn�1 by

z = �(x) �
�
x;

q
1� jxj2

�
=

�
x1; x2; :::; xn�1;

q
1� jxj2

�
:

For f 2 Lp (S), de�ne
TSf (�) � F (�� [f (x) dx]) =

Z
S

e�i�(x)��f (x) dx;

so that the usual bilinear form associated to TS can be decomposed by,

hTSf; gi =
*
TS

 X
I2G

4n�1
I;� f

!
;
X
J2D

4n
J;�g

+
=

X
(I;J)2G�D

D
TS 4n�1

I;� f;4n
J;�g

E
;

where
�
4n
J;�

	
J2D is an Alpert basis of projections for L2 (Rn), and

n
4n�1
I;�

o
J2G

is an Alpert basis of

projections for L2 (S). Using rotation invariance, the Fourier extension conjecture is shown at the beginning
of Section 3 below, to be equivalent to boundedness of TS , taken over a �nite collection of such patches
� (S).
However, in order to carry out the standard two weight approach to bounding TS , it will be necessary to

�x � 2 N, and instead expand the bilinear form hTSf; gi in terms of the smooth �-Alpert decompositions of
f and g,

hTSf; gi =
X

(I;J)2G�D

D
TS 4n�1;�

I;� f;4n;�
J;�g

E
;

so as to exploit the cancellation inherent in the oscillatory kernel e�i�(x)�� of the operator TS . Note that we
have written 4n�1;�

I;� for 4�;�
I;� , and 4

n;�
I;� for 4

�;!
I;� here, and will continue to do so for the remainder of the

paper, except where otherwise noted.

De�nition 7. A subset E of the unit sphere Sn�1 in Rn is said to be a ball if it is the intersection of the
sphere with a halfspace, and is said to be a pseudoball with constant Cpseudo, if there are concentric balls B1
and B2 such that

(1.11) B1 � E � B2 and jB2j � Cpseudo jB1j ;
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where jEj denotes surface measure on the sphere. We simply say that E is a pseudoball when Cpseudo
is understood from context, and we will sometimes de�ne a �center� of E to be the center (not uniquely
determined) of the balls B1 and B2 in (1.11).

De�nition 8. Given a subset F of Euclidean space Rn, we de�ne the tangential and radial �projections�of
F , onto Sn�1 and [0;1) respectively, by

�tan (F ) �
�
�

j�j : � 2 F
�
and �rad (F ) � fj�j : � 2 Fg :

Then for Cpseudo chosen large enough in (1.11), the subsets � (I) and �tan (J) of the sphere Sn�1 are
pseudoballs with constant Cpseudo, for all I 2 G and J 2 D. For E � Sn�1, we denote by �E the set
antipodal to E, i.e. �E =

�
� 2 Sn�1 : �� 2 E

	
. We now divide the collection of pairs (I; J) 2 G � D

according to the relative size and location of their associated pseudoballs � (I) and �tan (J), as dictated by
the uncertainty principle:

G � D � P [ P�;(1.12)

where P = P0 [
1[
m=1

Pm [ R;

and P� = f(I;�J) : (I; J) 2 Pg ;

and where

P0 � f(I; J) 2 G � D : �tan (J) � � (CpseudoI)g ;

Pm �
�
(I; J) 2 G � D : 2m+1I � S and �tan (J) � �

�
2m+1CpseudoI

�
n �

�
2m

1

Cpseudo
I

��
; m 2 N ;

R � f(I; J) 2 G � D : � (I) � �tan (CpseudoJ)g :

Note that there is some bounded overlap among the pairs in this decomposition, but this overcounting is
inconsequential. On the other hand the cases where �tan (J) \ � (2S) = ; are not included in the above
decomposition, but they are easily handled by the method used for the case m = s.
Finally we point out that it su¢ ces to show thatX

(I;J)2P

���DTS 4n�1;�
I;� f;4n;�

J;�g
E��� . kfkLp kgkLp0 ;

since (I; J) 2 P� if and only if (I;�J) 2 P, and this amounts to replacing the kernel e�i�(x)�� with the
kernel ei�(x)��, for which the estimates we obtain below are identical.

2. Smooth Alpert frames in Lp spaces

Recall the Alpert projections f4Q;�gQ2D and corresponding wavelets
�
haQ;�

	
Q2D; a2�n

of order � in Rn

that were constructed in B. Alpert [Alp] - see also [RaSaWi] for an extension to doubling measures, and for
the terminology we use here. In fact,

�
haQ;�

	
a2� is an orthonormal basis for the �nite dimensional vector

subspace of L2 that consists of linear combinations of the indicators of the children C (Q) of Q multiplied by
polynomials of degree at most �� 1, and such that the linear combinations have vanishing moments on the
cube Q up to order �� 1:

L2Q;k (�) �

8<:f = X
Q02C(Q)

1Q0pQ0;k (x) :

Z
Q

f (x)x`id� (x) = 0; for 0 � ` � k � 1 and 1 � i � n

9=; ;

where pQ0;k (x) =
P
�2Zn+:j�j�k�1

aQ0;�x
� is a polynomial in Rn of degree j�j = �1 + :::+ �n at most �� 1,

and x� = x�11 x�22 :::x
�n�1
n�1 . Let dQ;� � dimL2Q;� (�) be the dimension of the �nite dimensional linear space

L2Q;� (�). Moreover, for each a 2 �n, we may assume the wavelet haQ;� is a translation and dilation of the
unit wavelet haQ0;�

, where Q0 = [0; 1)
n is the unit cube in Rn.
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2.1. Alpert square functions. It is shown in [SaWi, Corollary 14], even for doubling measures, that despite
the failure of the �-Alpert expansion to be a martingale when � � 2, Burkholder�s proof of the martingale
transform theorem nevertheless carries over to prove, along with Khintchine�s inequality, that the Lp norm
of the Alpert square function Sf of f is comparable to the Lp norm of f , where

Sf (x) �

0@ X
Q2D; a2�n

��4a
Q;�f (x)

��21A 1
2

; x 2 Rn:

Of course Sf also depends on the grid D and �, but we suppress this in the notation. Moreover generally,
de�ne the corona square function

SFf (x) �
 X
F2F

���PC�F ;�f (x)���2
! 1

2

;

where F is any subset of the grid D, and fC�F gF2F is the associated corona decomposition. The following
square function estimates were proved in [SaWi, Corollary 14].

Theorem 9 (Sawyer and Wick [SaWi]). Suppose � is a doubling measure on Rn. Then for � 2 N and
1 < p <1, we have

(2.1) kSfkLp(�) + kSFfkLp(�) � Cp;n;� kfkLp(�) :

2.2. Smoothing the Alpert wavelets. Given a small positive constant � > 0, de�ne a smooth approximate
identity by �� (x) � ��n�

�
x
�

�
where � 2 C1c (BRn (0; 1)) has unit integral,

R
Rn � (x) dx = 1, and vanishing

moments of positive order less than �, i.e.

(2.2)
Z
� (x)xdx = �0jj =

�
1 if jj = 0
0 if 0 < jj < �

:

In fact we may take for � (x) a product function � (x) =
Qn
i=1 ' (xi) where ' 2 C1c ((�1; 1)) satis�es

(2.3)
Z
' (x)xdx =

�
1 if  = 0
0 if 0 <  < �

; for 1 � i � n:

One way to construct a function ' satisfying (2.3) is to pick � 2 C1c
��
3
4 ; 1
��
with

R
� (y) dy = 1, a large

N 2 N, and then for � � (�1; :::; �N ) to de�ne,

'� (x) =

NX
m=1

�m� (2
mx) :

Then with the change of variable y = 2mx we have,Z
'� (x)x

dx =
NX
m=1

�m

Z
� (2mx)xdx =

NX
m=1

�m2
�m(+1)

Z
� (y) ydy = C

NX
m=1

�m2
�m(+1):

In order to achieve
R
'� (x)x

dx =

�
1 if  = 0
0 if 0 <  < �

we need to solve the linear system,

1 =
NX
m=1

�m2
�m and 0 =

NX
m=1

�m2
�m(+1); for 0 <  < �;

which in matrix form is

e1 =M�� : where M� �
�
2�m`

�
1�m�N
1�`��

:
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We take N � � and observe that the square matrix M� �
�
2�m`

�
1�m��
1�`��

has nonzero determinant, in fact

jdetM�j is bounded below by 2�
�2(��1)

2 . Indeed, the square Vandermonde matrix

V (x) = V (x1; x2; :::; xn) �

26664
x1 x21 � � � xn1
x2 x22 � � � xn2
...

...
. . .

...
xn x2n � � � xnn

37775
has determinant detV (x) =

Y
1�i<j�n

(xj � xi). Thus with x (�) =
�
2�1; 2�2; :::; 2��

�
2 R�, we have

V (x (�)) =
�
2�m`

�
1�m��
1�`��

=M� and so

jdetM�j =
Y

1�i<j��

��2�j � 2�i�� � Y
1�i<j��

2�� = 2��
�(��1)

2 :

Thus we can �nd coe¢ cients � � (�1; :::; �N ) such that ' = '� satis�es (2.3).
In the spirit of symbol smoothing for pseudodi¤erential operators, we de�ne smooth Alpert �wavelets�by

ha;�Q;� � haQ;� � ��`(Q);

and we claim that haQ;� and h
a;�
Q;� coincide away from the �-neighbourhood (often referred to as a �halo�)

(2.4) H� (Q) � fx 2 Rn : dist (x; SQ) < �g ;

of the skeleton SQ �
S
Q02CD(Q) @Q

0. Note that away from the skeleton, the Alpert wavelet haQ;� restricts
to a polynomial of degree less than � on each dyadic child of Q. We now show the same for smooth Alpert
wavelets away from the halo of the skeleton.

Lemma 10. With notation as above and � satisfying (2.2), we have

(2.5) haQ;� (x) = ha;�Q;� (x) ; x 2 Rn n H� (Q) :

Proof. If m� (x) � x� = x�11 x�22 :::x�nn is a multinomial, then

(m� � �) (x) =
X

0����

�
c�;�

Z
y���� (y) dy

�
x� = x� = m� (x) ;

which shows that (2.5) holds. �

We also observe that for 0 � j�j < �,Z
ha;�Q;� (x)x

�dx =

Z
��`(I) � haQ;� (x)x�dx =

Z Z
��`(I) (y)h

a
Q;� (x� y)x�dx

=

Z
��`(I) (y)

�Z
haQ;� (x� y)x�dx

�
dy =

Z
��`(I) (y)

�Z
haQ;� (x) (x+ y)

�
dx

�
dy

=

Z
��`(I) (y) f0g dy = 0;

by translation invariance of Lebesgue measure.

2.3. The reproducing formula. For the purposes of this subsection we will change notation from that in
Theorem 4 in the introduction by de�ning

4�
I;�f �

X
a2�n



f; haI;�

�
ha;�I;� = (4I;�f) � ��`(I) :

Next, for any grid D, we wish to show that the linear map SD�;� de�ned by

(2.6) SD�;�f �
X

I2D; a2�n



f; haI;�

�
h�;aI;� =

X
I2D

4�
I;�f ; f 2 Lp;
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is bounded and invertible on Lp, and that we have the reproducing formula,

f (x) =
X

I2D; a2�n

D�
SD�;�

��1
f; haI;�

E
ha;�I;� (x) ; for all f 2 Lp \ L2;

with convergence in the Lp norm and almost everywhere. Since � is �xed throughout our arguments we will
often write SD� instead of SD�;� in the sequel.

Proof of Theorem 4. Theorem 4 follows easily, together with what was proved just above, from the Theorem
11 below if we de�ne the pseudoprojection 4�

I;� in Theorem 4 as the pseudoprojection e4�

I;� in Theorem
11. �
We include arbitrary grids D in Theorem 11 since this may be useful in other contexts where probability

of grids plays a role, originating with the work of Nazarov, Treil and Volberg, see e.g. [NTV4] and [Vol], and
references given there.

Theorem 11. Let n � 2 and � 2 N with � > n
2 . Then there is �0 > 0 depending on n and � such that

for all 0 < � < �0, and for all grids D in Rn, and all 1 < p < 1, there is a bounded invertible operator
SD� = SD�;� on L

p, and a positive constant Cp;n;� such that the collection of functions
n
ha;�I;�

o
I2D; a2�n

is a

Cp;n;�-frame for Lp, by which we mean5,

f (x) =
X

I2D; a2�n

e4�

I;�f (x) ; for a.e. x 2 Rn, and for all f 2 Lp;(2.7)

where e4�

I;�f �
X
a2�n

D�
SD�
��1

f; haI;�

E
ha;�I;� ;

and with convergence of the sum in both the Lp norm and almost everywhere, and

1

Cp;n;�
kfkLp �


 X
I2D

��� e4�

I;�f
���2! 1

2


Lp

;


 X
I2D

���4�
I;�f

���2! 1
2


Lp

� Cp;n;� kfkLp ;

for all f 2 Lp:

Notation 12. We will often drop the index a parameterized by the �nite set �n as it plays no essential role
in most of what follows, and it will be understood that when we write

4�
Q;�f = hf; hQ;�ih

�
Q;�;

we actually mean the Alpert pseudoprojection,

4�
Q;�f =

X
a2�n



f; haQ;�

�
h�;aQ;� :

Now we turn to two propositions that we will use in the proof of Theorem 11.

Proposition 13. For � > n
2 and � > 0 su¢ ciently small, we haveSD� fLp � kfkLp ; for f 2 Lp \ L2 and 1 < p <1:

Proposition 14. For � > n
2 and � > 0 su¢ ciently small, we have�SD� �� f

Lp
� kfkLp ; for f 2 Lp \ L2 and 1 < p <1:

To prove these propositions, we will need some estimates on the inner products
D
h�I;�; hQ;�

E
where one

wavelet is smooth and the other is not. Fix a dyadic grid D. We say that dyadic cubes Q1 and Q2 are
siblings if ` (Q1) = ` (Q2), Q1 \Q2 = ; and Q1 \Q2 6= ;, and we say they are dyadic siblings if in addition
they have a common dyadic parent, i.e. �DQ1 = �DQ2. Finally, we de�ne Car (Q) to be the set of I 2 D
with ` (I) < ` (Q) such that I and Q share a face. We refer to these cubes I as Carleson cubes of Q, and
note they can be either outside Q or inside Q. Finally, we may assume without loss of generality that � is a
negative integer power of 2.

5See [AlLuSa] and [CaHaLa] for more detail on frames in Lp spaces.
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Lemma 15. Suppose � 2 N, 0 < � = 2�k < 1, and I;Q 2 D, where D is a grid in Rn. Then we have���Dh�Q;�; hQ;�E��� � 1 and
���Dh�Q;�; hQ0;�

E��� . �; for Q and Q0 siblings;���Dh�I;�; hQ;�E��� . �

�
` (I)

` (Q)

�n
2

; for I 2 Car (Q) ;

���Dh�I;�; hQ;�E��� . �

�
` (Q)

` (I)

�n
2�1

; for Q 2 Car (I) and ` (Q) � �` (I) ;

���Dh�I;�; hQ;�E��� . 1

��

�
` (Q)

` (I)

��+n
2

; for ` (Q) � �` (I) and Q \H �
2
(I) 6= ;;D

h�I;�; hQ;�

E
= 0; in all other cases:

Proof. Fix a grid D, and take 0 < � < 1. We haveD
h�Q;�; hQ;�

E
= hhQ;�; hQ;�i+

D
h�Q;� � hQ;�; hQ;�

E
= 1 +

Z
H�(Q)

�
h�Q;� � hQ;�

�
(x)hQ;� (x) dx;

where�����
Z
H�(Q)

�
h�Q;� � hQ;�

�
(x)hQ;� (x) dx

����� . h�Q;� � hQ;�1 khQ;�k1 jH� (Q)j . 1p
jQj

1p
jQj

� jQj = �:

Next we note that if I is a dyadic cube and Q 2 Car (I), then Q\H� (I) 6= ; and
D
h�I;�; hQ;�

E
6= 0 where

� = 2�k imply that SupphQ;� = Q � H� (I). If Q � H� (I), then we haveD
h�I;�; hQ;�

E
=

Z
H�(I)

1Qh
�
I;� (x)hQ;� (x) dx =

Z
Q\H�(I)

�
hI;� � ��`(I)

�
(x)hQ;� (x) dx

=

Z
Q\H�(I)

�Z
I

hI;� (y)��`(I) (x� y) dy
�
hQ;� (x) dx =

Z
I

hI;� (y)

(Z
Q\H�(I)

��`(I) (x� y)hQ;� (x) dx
)
dy

=

Z
I\2�`(I)Q

hI;� (y)

8<:
Z
Q\H�(I)

24��`(I) (x� y)� ��1X
j=0

((x� cQ) � r)j ��`(I) (cQ � y)

35hQ;� (x) dx
9=; dy

� khI;�k1
�r���`(I)�1 ` (Q)

� khQ;�k1
Z
B(cQ;�`(I))

Z
Q\H�(I)

dxdy

.
s
1

jIj kr
��k1

�
1

�` (I)

�n+�
` (Q)

�

s
1

jQj jB (cQ; �` (I))j jQ \H� (I)j .
1

��

�
` (Q)

` (I)

��+n
2

;

since khI;�k1 .
q

1
jIj , khQ;�k1 .

q
1
jQj and

r���`(I)1 � kr��k1
�

1
�`(I)

��
.

If Q 2 Car (I) and ` (Q) � �` (I), then we have the trivial estimate���Dh�I;�; hQ;�E��� . �` (I) ` (Q)
n�1

s
1

jIj jQj = �

�
` (Q)

` (I)

�n
2�1

:

On the other hand, if I 2 Car (Q), we claim that���Dh�I;�; hQ;�E��� . �

�
` (I)

` (Q)

�n
2

:

Indeed, this is clear if Q\ I = ; since then
���Dh�I;�; hQ;�E��� � � jIj

q
1
jIj

q
1
jQj , while if Q

0 2 CD (I) is the child

containing I, and if ' (x� cQ0) is the polynomial whose restriction to Q0 is (1Q0hQ;�) (x), then
D
h�I;�; '

E
= 0

and so ���Dh�I;�; hQ;�E��� = ���Dh�I;�; hQ;� � 'E��� . �

s
jIj
jQj = �

�
` (I)

` (Q)

�n
2

:
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�

We will also need the following consequence of the Marcinkiewicz interpolation theorem.

Lemma 16. For 1 < p <1 and � 2 N, we have
0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1H�(I) (x)

!21A 1
2


Lp

� Cp;n�
p kfkLp ;

where p �

8<:
1

2(p�1) if p > 2
1
2 if p = 2
p�1
p(3�p) if 1 < p < 2

:

Proof. De�ne the square function R� by

R�f (x) �

0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1I\H�(I) (x)

!21A 1
2

:

Using 1H�(I) (x) .M1I\H�(I) (x), the Fe¤erman-Stein vector valued maximal inequality [FeSt] yields,
0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1H�(I) (x)

!21A 1
2


Lp

.


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

M1I\H�(I) (x)

!21A 1
2


Lp

.


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1I\H�(I) (x)

!21A 1
2


Lp

= kR�f (x)kLp :

Now we note that

kR�fkLp .


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1I

!21A 1
2


Lp

=


 X
I2D

(4I;�f)
2

! 1
2


Lp

= kRfkLp � kfkLp

and

kR�fk2L2 =

Z X
I2D

 
jhf; hI;�ij
jIj

1
2

1I\H�(I) (x)

!2
dx =

Z X
I;I02D

jhf; hI;�ij
jIj

1
2

jhf; hI0;�ij
jI 0j

1
2

1I\H�(I) (x)1I0\H�(I0) (x) dx

=
X

I;I02D

jhf; hI;�ij
jIj

1
2

jhf; hI0;�ij
jI 0j

1
2

jI \H� (I) \ I 0 \H� (I 0)j �
X

I;I02D

jhf; hI;�ij
jIj

1
2

jhf; hI0;�ij
jI 0j

1
2

� jI \ I 0j

= �

Z X
I2D

 
jhf; hI;�ij
jIj

1
2

1I (x)

!2
dx = �

Z X
I2D

jhf; hI;�ij2

jIj 1I (x) dx = �
X
I2D

jhf; hI;�ij2 = � kfk2L2 :

Thus the (linearizable) sublinear operator R� maps L2 ! L2 with bound B2 � �
1
2 , and maps Lq ! Lq with

bound Bq � C 0n;q for 1 < q <1 and q 6= 2.
In the case p > 2, let q = 2p. Then by the scaled Marcinkiewicz theorem applied to R� with exponents 2

and q = 2p, see e.g. [Tao2, Remark 29], we have

kR�fkLp � C 00n;pB
1��
2 B�2p = C 00n;p�

1
2 (1��)

�
C 0n;2p

��
= Cn;p�

1
2(p�1) ;

with Cn;p = C 00n;p
�
C 0n;2p

� p�2
p�1 , since 1

p =
1��
2 + �

2p implies 1� � =
1
p�1 .
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In the case 1 < p < 2, take q = 1+p
2 and apply the scaled Marcinkiewicz theorem to R� with exponents 2

and q = 1+p
2 to obtain

kR�fkLp � C 00n;pB
1��
2 B�1+p

2

= C 00n;p�
1
2 (1��)

�
C 0
n; 1+p2

��
= Cn;p�

p�1
p(3�p) ;

with Cn;p = C 00n;p

�
C 0
n; 1+p2

��
, since 1

p =
1��
2 + �

1+p
2

implies 1� � = 2p�2
p(3�p) . �

2.3.1. Injectivity. We can now prove Proposition 13.

Proof of Proposition 13. We have

SD� f =
X
Q2D

4Q;�S�f =
X
Q2D

hS�f; hQ;�ihQ;� =
X
Q2D

*X
I2D

hf; hI;�ih�I;�; hQ;�

+
hQ;� =

X
Q;I2D

hf; hI;�i
D
h�I;�; hQ;�

E
hQ;� ;

and by the square function estimate (2.1),

SD� fLp �

0@X
Q2D

jhS�f; hQ;�ihQ;�j2
1A 1

2


Lp

=


0@X
Q2D

�����X
I2D

hf; hI;�i
D
h�I;�; hQ;�

E
hQ;�

�����
2
1A 1

2


Lp

�


0@X
Q2D

���hf; hQ;�iDh�Q;�; hQ;�E���2 jhQ;�j2
1A 1

2


Lp

+O

0BB@

0B@X
Q2D

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

jhQ;�j2

1CA
1
2


Lp

1CCA

�


0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

+O

0BB@

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

1Q

1CA
1
2


Lp

1CCA ;

where for some cp > 0,
0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

=


0@X
Q2D

j4Q;�f j2
1A 1

2


p

Lp

� cp kfkpLp :

Thus we have for each Q 2 D,X
I2D: I 6=Q

hf; hIi hh�I ; hQi =
X

I2D: `(I)<`(Q)
I2Car(Q)

hf; hIi hh�I ; hQi+
X

I2D: `(I)>`(Q)
Q\H �

2
(I) 6=;

hf; hIi hh�I ; hQi

+
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hIi hh�I ; hQi :

As a consequence of the estimates in Lemma 15, we have for each Q 2 D,������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ

E������ . �
X

I2D: `(I)<`(Q)
I2Car(Q)

jhf; hI;�ij
�
` (I)

` (Q)

�n
2

+
X

I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

jhf; hI;�ij
1

��

�
` (Q)

` (I)

��+n
2

+

��������
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i
D
h�I;�; hQ

E��������
� A (Q) +B (Q) + C (Q) :



16 E. T. SAWYER

Altogether we have
0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

1Q

1CA
1
2


Lp

.


0@X
Q2D

1

jQjA (Q)
2
1Q

1A 1
2


Lp

(2.8)

+


0@X
Q2D

1

jQjB (Q)
2
1Q

1A 1
2


Lp

+


0@X
Q2D

1

jQjC (Q)
2
1Q

1A 1
2


Lp

:

We now claim that

(2.9)


0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

1Q

1CA
1
2


Lp

. �
1
2p

�
log2

1

�

�
kfkLp :

With this established, and since � > n
2 , we obtain

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2
1CA

1
2


Lp

� C�
1
2p

�
log2

1

�

�
kfkLp <

cp
2
kfkLp ;

with � > 0 su¢ ciently small. This then gives

Cp kfkLp �
SD� fLp � cp kfkLp �

cp
2
kfkLp =

cp
2
kfkLp ;

which completes the proof of Proposition 13 modulo (2.9).
We prove (2.9) by estimating each of the three terms on the right hand side of (2.8) separately, beginning

with the term involving A (Q).
Case A (Q): For each Q 2 D, we have for 0 < " < 1 and 0 <  < n� ",

A (Q) = �
X

I2D: `(I)<`(Q)
I2Car(Q)

jhf; hI;�ij
�
` (I)

` (Q)

�n
2

= �
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

jhf; hI;�ij 2�t
n
2

. �
1X
t=1

vuuut X
I2D: `(I)=2�t`(Q)

I2Car(Q)

jhf; hI;�ij2 2�t(n�") = �
1X
t=1

2�t
n�"�

2

vuuut X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t jhf; hI;�ij2

� �

vuut 1X
t=1

2�t(n�"�)

vuuuut
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t jhf; hI;�ij2 = �

s
2�(n�"�)

1� 2�(n�"�)

vuuuut
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t jhf; hI;�ij2:

and so

A (Q) = �
X

I2D: `(I)<`(Q)
I2Car(Q)

jhf; hI;�ij
�
` (I)

` (Q)

�n
2

� �

vuuuut
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t(n�2") jhf; hI;�ij2
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if we take  = n� 2". It follows that


0@X
Q2D

1

jQjA (Q)
2
1Q

1A 1
2


Lp

. �



0BBB@X
Q2D

1

jQj

1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t(n�2") jhf; hI;�ij2 1Q

1CCCA
1
2


Lp

= �



0BBB@X
I2D

jhf; hI;�ij2
1X
t=1

1

jQj
X

Q2D: `(I)=2�t`(Q)
I2Car(Q)

2�t(n�2")1Q

1CCCA
1
2


Lp

� �


 X
I2D

jhf; hI;�ij2
1X
t=1

1

j2tIj2
�t(n�2")12tI

! 1
2


Lp

� �


 X
I2D

jhf; hI;�ij2

jIj

1X
t=1

2�2tn+2"t12tI

! 1
2


Lp

. �


 X
I2D

jhf; hI;�ij2

jIj (M1I)
2 2�2"2

! 1
2


Lp

. �


 X
I2D

jhf; hI;�ij2

jIj (Mr1I)
2

! 1
2


Lp

. �


 X
I2D

jhf; hI;�ij2

jIj 1I

! 1
2


Lp

� � kfkLp ;

provided 1 < r = 2
2�2" =

1
1�" < p because since

1X
t=1

2�2tn+2"t12tI . (M1I)2
2�2"
2 = (Mr1I)

2
;

where the inequality follows from

1X
t=1

2�2tn+2"t12tI (x) �
1X
t=1

2�2tn+2"t12tI�2t�1I (x)

=
1X
t=1

2�2tn(1�
"
n )12tI�2t�1I (x) .

1X
t=1

M1I (x)
2(1� "

n ) 12tI�2t�1I (x) =M1I (x)
2(1� "

n ) ;

and the equality is by de�nition of Mr and since 1I = (1I)
r,

(M1I)
2 2�2"2 =

�
(M (1I)

r
)
1
r

�2
= (Mr1I)

2
:
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Case B (Q): Set � = 2�� . Note that the function squared in the second norm in (2.8) then satis�es

X
Q2D

1

jQjB (Q)
2
1Q (x) =

X
Q2D

1

jQj

0BBB@ X
I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

jhf; hI;�ij
1

��

�
` (Q)

` (I)

��+n
2

1CCCA
2

1Q (x)

=
1

�2�

X
Q2D

1

jQj
X

I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

X
I02D: `(Q)��`(I0)
Q\H �

2
(I0)6=;

jhf; hI;�ij jhf; hI0;�ij
�
` (Q)

` (I)

��+n
2
�
` (Q)

` (I 0)

��+n
2

1Q (x)

=
1

�2�
2

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
�

1

` (I) ` (I 0)

��+n
2 X
Q2D: `(Q)��`(I)

Q\H �
2
(I)6=;

` (Q)
2�
1Q (x)

� 1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
�

1

` (I) ` (I 0)

��+n
2

` (I)
2�

1X
t=�

X
Q2D: `(Q)=2�t`(I)

Q\H �
2
(I)6=;

1Q (x) 2
�t2�;

where for t � � and x 2 H �
2
(I), we have X

Q2D: `(Q)=2�t`(I)
Q\H �

2
(I)6=;

1Q (x) � 1;

so thatX
Q2D

1

jQjB (Q)
2
1Q (x) .

1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
�

1

` (I) ` (I 0)

��+n
2

` (I)
2�

1X
t=�

2�t2�1H �
2
(I) (x) :

Now recalling 2�t = `(Q)
`(I) , we have for t � �,

#
n
Q 2 D : dist (Q; @I) � ` (Q) = 2�t` (I) and Q \H �

2
(I) 6= ;

o
is
�
� �2tn if t � �
0 if 1 � t < �

:

Our blanket assumption that � > n
2 shows that all of the geometric series appearing below are convergent.

Then we haveX
Q2Dgood

1

jQjB (Q)
2
1Q (x) . 1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
` (I)

n
2 ` (I 0)

n
2

�
` (I)

` (I 0)

�� 1X
t=�

2�t2�1H �
2
(I) (x)

. 1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
` (I)

n
2 ` (I 0)

n
2

�
` (I)

` (I 0)

��
2��2�

1� 2�2�1H �
2
(I) (x)

.
X

I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
` (I)

n
2 ` (I 0)

n
2

�
` (I)

` (I 0)

��
1H �

2
(I) (x) ;

which in turn equals,

X
I2D

1X
s=1

jhf; hI;�ijp
jIj`

���Df; h(�(s)I);�E���q���(s)I��
 

` (I)

`
�
�(s)I

�!� 1H�(I) (x)

=
X
I2D

1X
s=1

jhf; hI;�ij
jIj

1
2

���Df; h(�(s)I);�E������(s)I�� 12 2�s�1H�(I) (x)

=

 1X
s=1

2�s�

!X
I2D

jhf; hI;�ij
jIj

1
2

���Df; h(�(s)I);�E������(s)I�� 12 1H�(I) (x) ;
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which is at most

 1X
s=1

2�s�

!vuutX
I2D

 
jhf; hI;�ij
jIj

1
2

!2
1H�(I) (x)

vuuutX
I2D

0@
���Df; h(�(s)I);�E������(s)I�� 12

1A2

1H�(�(t)I) (x) �
X
I2D

 
jhf; hI;�ij
jIj

1
2

!2
1H�(I) (x) :

By Lemma 16 we thus have

(2.10)


0@X
Q2D

1

jQjB (Q)
2
1Q

1A 1
2


Lp

.


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1H�(I) (x)

!21A 1
2


Lp

� Cp;n�
1

2(p�1) kfkLp :

Case C (Q): We have,

X
Q2D

1

jQjC (Q)
2
1Q =

X
Q2D

1

jQj

��������
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i
D
h�I;�; hQ;�

E��������
2

1Q (x)

=
X
Q2D

1

jQj

0BBBB@
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

X
I2D: `(I0)�`(Q)��`(I0)

Q2Car(I0)

hf; hI;�i
D
h�I;�; hQ;�

E
hf; hI0;�i

D
h�I0;�; hQ

E
1CCCCA1Q (x)

�
X
Q2D

1

jQj

0BBBB@
X

I;I02D: I�I0 and `(I)�`(Q)��`(I0)
Q2Car(I)\Car(I0)

hf; hI;�i
D
h�I;�; hQ;�

E
hf; hI0;�i

D
h�I0;�; hQ;�

E
1CCCCA1Q (x)

=
X
Q2D

1

jQj

0BBBBBBB@
X

I;I02D: I�I0
Q2Car(I)\Car(I0)
`(I)�`(Q)��`(I0)

hf; hIi hf; hI0i hh�I ; hQi hh
�
I0 ; hQi

1CCCCCCCA
1Q (x) :

We �rst compute the diagonal sum restricted to I = I 0. Set

��;t (I) �
�
x 2 I : dist (x;H� (I)) � 2t�` (I)

	
; for 0 � t � �;

where we recall that � = 2�� , and note that the diagonal portion of the sum above equals

X
Q2D

1

jQj

0BB@ X
I2D: Q2Car(I)
`(I)�`(Q)��`(I)

jhf; hIij2
���Dh�I;�; hQ;�E���2

1CCA1Q (x) =X
I2D

jhf; hI;�ij2
X

Q2D: Q2Car(I)
`(I)�`(Q)��`(I)

���Dh�I;�; hQ;�E���2
jQj 1Q (x)

.
X
I2D

jhf; hI;�ij2
X

Q2D: Q2Car(I)
`(I)�`(Q)��`(I)

�2
�
`(Q)
`(I)

�n�2
` (Q)

n 1Q (x) = �2
X
I2D

jhf; hI;�ij2
X

Q2D: Q2Car(I)
`(I)�`(Q)��`(I)

1

` (I)
n�2

` (Q)
21Q (x)

� �2
X
I2D

jhf; hI;�ij2
1

` (I)
n�2

[�` (I) + dist (x;H� (I))]2
1I (x) =

X
I2D

jhf; hI;�ij2

jIj

0@ 1

1 +
dist(x;H�(I))

�`(I)

1A2

1I (x) ;
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which can be written asX
I2D

jhf; hI;�ij2

jIj

�X
t=0

1��;t (x)

0@ 1

1 +
dist(x;H�(I))

�`(I)

1A2

�
X
I2D

jhf; hI;�ij2

jIj

�X
t=0

2�2t1��;t(I) (x) :

Thus
X
Q2D

1

jQj

0BB@ X
I2D: Q2Car(I)
`(I)�`(Q)��`(I)

jhf; hI;�ij2
���Dh�I;�; hQ;�E���2

1CCA1Q (x)

Lp

.
�X
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1��;t(I) (x)


Lp

:

From the estimate for term B in (2.10), with � replaced by 2t�, we obtainX
I2D

jhf; hI;�ij2

jIj 1��;t(I) (x)


Lp

. Cp;n
�
2t�
� 1
2(p�1) kfkLp ;

and so altogether, the diagonal portion of
PQ2D

1
jQjC (Q)

2
1Q (x)


Lp
is at most

�X
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1��;t(I) (x)


Lp

.
�X
t=0

Cp;n2
�2t �2t�� 1

2(p�1) kfkLp

= �
1

2(p�1)

�X
t=0

Cp;n2
�t(2� 1

2(p�1) ) kfkLp = �
1

2(p�1)

�X
t=0

Cp;n2
�t 4(p�1)�1

2(p�1) kfkLp

= �
1

2(p�1)

�X
t=0

Cp;n2
�t 4p�52p�2 kfkLp � Cp;n

8><>:
�

1
2(p�1) kfkLp if p > 5

4

�2
�
log2

1
�

�
kfkLp if p = 5

4

�2 kfkLp if 1 < p < 5
4

:

Now we use the estimate
���Dh�I;�; hQ;�E��� . �

�
`(Q)
`(I)

�n
2�1

for Q 2 Car (I) and ` (Q) � �` (I), to obtain

X
Q2D

1

jQj

��������
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i hh�I ; hQi

��������
2

1Q (x)

.
X

I;I02D: I�I0
jhf; hI;�ij jhf; hI0;�ij

X
Q2D: Q2Car(I)\Car(I0)

`(I)�`(Q)��`(I0)

���Dh�I;�; hQ;�E��� ���Dh�I0;�; hQ;�E��� 1jQj1Q (x)

. �2
X

I;I02D: I�I0
jhf; hI;�ij jhf; hI0;�ij

X
Q2D: Q2Car(I)\Car(I0)

`(I)�`(Q)��`(I0)

�
` (Q)

` (I)

�n
2�1�` (Q)

` (I 0)

�n
2�1 1

jQj1Q (x)

= �2
X

I;I02D: I�I0

jhf; hI;�ij jhf; hI0;�ijp
jIj
p
jI 0j

X
Q2Car(I)\Car(I0)
`(I)�`(Q)��`(I0)

` (I)

` (Q)

` (I 0)

` (Q)
1Q (x) :

At this point we observe that the conditions imposed on the cubes I and I 0 in the sum above are that
there exists a cube Q such that Q � I � I 0, Q 2 Car (I) \ Car (I 0), and ` (I) � ` (Q) � �` (I 0). It follows
from these conditions that

I 2 Car (I 0) and ` (I) � ` (I 0) � 1

�
` (I) = 2�` (I) :

Thus we can now pigeonhole the ratio of the lengths of I and I 0 by

` (I 0)

` (I)
= 2s; for 0 � s � �:
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With s �xed we have I 0 = �(s)I and

�2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I��

X
Q2Car(I)\Car(�(s)I)
`(I)�`(Q)��`(�(s)I)

` (I)

` (Q)

`
�
�(s)I

�
` (Q)

1Q (x)

= �2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I��

X
Q2Car(I)\Car(�(s)I)
`(I)�`(Q)�2s�`(I)

2s
�
` (I)

` (Q)

�2
1Q (x)

� 2s�2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I�� 2s

�
` (I)

2s�` (I) + dist (x;H2s� (I))

�2
1I (x)

= 2s�2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I�� 2s

0@ 1

2s� +
dist(x;H2s�(I))

`(I)

1A2

1I (x)

=
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I (x) ;

where our sum is exactly like the diagonal portion with two exceptions, namely that I has been replaced by
�(s)I in the second factor, and � has been replaced by 2s� in the third factor. Thus we continue with,

X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I (x)

=
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
��sX
t=0

1�2s�;t(I) (x)

0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

�
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
��sX
t=0

2�2t1�2s�;t(I) (x) ;

since �2s�;t (I) = fx 2 I : dist (x;H2s� (I)) � 2t2s�` (I)g and dist (x;H2s� (I)) � ` (I).
Now we continue to proceed as in the diagonal case to obtain,

X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I


Lp

.
��sX
t=0

2�2t


X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I�� 1�2s�;t(I)


Lp

.
��sX
t=0

2�2t


vuutX
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I)

vuuutX
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

.
��sX
t=0

2�2t

�
X
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I) +
1

�

X
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

;
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for every choice of � 2 (0; 1). Thus it remains to estimate each of the terms

�

��sX
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I)


Lp

and
1

�

��sX
t=0

2�2t


X
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

;

and then minimize the sum over 0 < � < 1. But from (2.10), we have

��sX
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I)


Lp

. Cp;n (2
s�)

1
2(p�1) kfkLp ;

��sX
t=0

2�2t


X
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

.
��sX
t=0

2�2t

X
I02D

jhf; hI0;�ij2

jI 0j 1��;t(I0)


Lp

. Cp;n�
1

2(p�1) kfkLp ;

since

��;t (I
0) �2s�;t (I) =

�
x 2 I : dist (x;H2s� (I)) � 2t2s�` (I)

	
�

�
x 2 I 0 : dist (x;H� (I 0)) � 2t�` (I 0)

	
= ��;t (I

0) :

Thus with � = 2�
s

4(p�1) , we obtain
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I


Lp

. �Cp;n (2
s�)

1
2(p�1) kfkLp +

1

�
Cp;n�

1
2(p�1) kfkLp

=

�
�2

s
2(p�1) +

1

�

�
Cp;n�

1
2(p�1) kfkLp = 2Cp;n2

s
4(p�1) 2�

�
2(p�1) kfkLp

� 2Cp;n2
� �
4(p�1) kfkLp = 2Cp;n�

1
4(p�1) kfkLp ;

since 0 � s � �. Finally we sum in s from 0 to � = log2
1
� to conclude that,

0@X
Q2D

1

jQjC (Q)
2
1Q

1A 1
2


Lp

. �
1

4(p�1) log2
1

�
kfkLp :

This �nishes the proof of Proposition 13. �

2.3.2. Surjectivity. The proof of Proposition 14 is very similar to that of the previous proposition in light of

the following equivalences. Using
���4�

I;�f
��� �Mdy

�
4�
I;�f

�
, together with the Fe¤erman-Stein vector-valued

maximal inequalities [FeSt] and the square function equivalence (2.1), shows that
 X
I2D

���4�
I;�f

���2! 1
2


Lp

�


 X
I2D

j4I;�f j2
! 1

2


Lp

�
X
I2D

4I;�f


Lp

= kfkLp :

We also have from the square function equivalence that
(2.11)
 X
I2D

�����4�
I;�

�tr
f

����2
! 1

2


Lp

=


 X
I2D

���Df; h�I;�EhI;����2
! 1

2


Lp

�
X
I2D

D
f; h�I;�

E
hI;�


Lp

=

X
I2D

�
4�
I;�

�tr
f


Lp

:
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Furthermore, from the de�nition
�
SD�
�tr
f =

P
I2D

D
f; h�I;�

E
hI;�, we then obtain

�SD� �tr f
Lp
�


0@X
Q2D

���4Q;�

�
SD�
�tr
f
���2
1A 1

2


Lp

=


0@X
Q2D

���D�SD� �� f; hQ;�EhQ;����2
1A 1

2


Lp

(2.12)

=


0@X
Q2D

1

jQj

�����
*X
I2D

D
f; h�I;�

E
hI;�; hQ;�

+�����
2
1A 1

2


Lp

=


0@X
Q2D

1

jQj

���Df; h�Q;�E���2
1A 1

2


Lp

:

Proof of Proposition 14. From (2.12) we have,

�SD� �tr f
Lp
�


0@X
Q2D

1

jQj

���Df; h�Q;�E���2
1A 1

2


Lp

=


0@X
Q2D

1

jQj

�����X
I2D

hf; hI;�i
D
hI;�; h

�
Q;�

E�����
2
1A 1

2


Lp

;

which we now compare to

SD� fLp �

0@X
Q2D

jhS�f; hQ;�ihQ;�j2
1A 1

2


Lp

=


0@X
Q2D

1

jQj

�����X
I2D

hf; hI;�i
D
h�I;�; hQ;�

E�����
2
1A 1

2


Lp

;

that was shown to be comparable to kfkLp in Proposition 13 above. The only di¤erence between the two
right hand sides is that the convolution appears with h�Q;� in the �rst norm, and with h

�
I;� in the second

norm. We now use the estimates in Lemma 15 just as in the proof of Proposition 13 above. Here is a sketch
of the details that is virtually verbatim that of those in the proof of Proposition 13. Recall that H� (I) is
de�ned in (2.4).
For convenience we �rst rewrite the estimates in Lemma 15 so as to apply directly to the inner productD
hI;�; h

�
Q;�

E
instead of

D
h�I;�; hQ;�

E
. This is accomplished by simply interchanging Q and I throughout:���Dh�Q;�; hQ;�E��� � 1 and

���Dh�Q;�; hQ0;�

E��� . �; for Q and Q0 siblings;(2.13) ���Dh�Q;�; hI;�E��� . �

�
` (Q)

` (I)

�n
2

; for Q 2 Car (I) ;

���Dh�Q;�; hI;�E��� . �

�
` (I)

` (Q)

�n
2�1

; for I 2 Car (Q) and ` (I) � �` (Q) ;

���Dh�Q;�; hI;�E��� . 1

��

�
` (I)

` (Q)

��+n
2

; for ` (I) � �` (Q) and I \H �
2
(I) 6= ;;D

h�Q;�; hI;�

E
= 0; in all other cases:

Now we have by the square function estimate (2.1),

�SD� �tr f
Lp
�


0@X
Q2D

�����X
I2D

hf; hI;�i
D
hI;�; h

�
Q;�

E
hQ;�

�����
2
1A 1

2


Lp

�


0@X
Q2D

���hf; hQ;�iDhQ;�; h�Q;�E���2 jhQ;�j2
1A 1

2


Lp

+O

0BB@

0B@X
Q2D

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

jhQj2

1CA
1
2


Lp

1CCA

�


0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

+O

0BB@

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

1Q

1CA
1
2


Lp

1CCA ;
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where for some cp > 0,
0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

=


0@X
Q2D

j4Q;�f j2
1A 1

2


p

Lp

� cp kfkpLp :

Thus we have for each Q 2 D,X
I2D: I 6=Q

hf; hI;�i
D
hI;�; h

�
Q;�

E
=

X
I2D: `(I)<`(Q)

I2Car(Q)

hf; hI;�i
D
hI;�; h

�
Q;�

E
+

X
I2D: `(I)>`(Q)
Q\H �

2
(I) 6=;

hf; hI;�i
D
hI;�; h

�
Q;�

E

+
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i
D
hI;�; h

�
Q;�

E
:

As a consequence of the estimates in (2.13), we have for each Q 2 D,������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������ .

��������
X

I2D: `(I)<`(Q)
I2Car(Q)

hf; hI;�i
D
hI;�; h

�
Q;�

E��������+
X

I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

jhf; hI;�ij
1

��

�
` (Q)

` (I)

��+n
2

+�
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

jhf; hI;�ij
�
` (Q)

` (I)

�n
2

� A (Q) +B (Q) + C (Q) :

Altogether we have
0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

1Q

1CA
1
2


Lp

.


0@X
Q2D

1

jQjA (Q)
2
1Q

1A 1
2


Lp

(2.14)

+


0@X
Q2D

1

jQjB (Q)
2
1Q

1A 1
2


Lp
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0@X
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1

jQjC (Q)
2
1Q

1A 1
2


Lp

:

We now claim that

(2.15)


0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

1Q

1CA
1
2


Lp

. �
1
2p

�
log2

1

�

�
kfkLp :

With this established, and taking � > n
2 , we obtain just as in the proof of Proposition 13,

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2
1CA

1
2


Lp

� C�
1
2p

�
log2

1

�

�
kfkLp <

cp
2
kfkLp ;

with � > 0 su¢ ciently small. This then gives

Cp kfkLp �
�SD� �tr f

Lp
� cp kfkLp �

cp
2
kfkLp =

cp
2
kfkLp ;

which completes the proof of Proposition 14 modulo (2.15).
We prove (2.15) by estimating each of the three terms on the right hand side of (2.14) separately. These

three terms are handled exactly as in Proposition 13 except that the arguments for handling terms A and
C are switched, with term B handled the same as before. We leave the routine veri�cations to the reader,
and this �nishes our proof of Proposition 14. �
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2.3.3. Representation. Combining the two propositions above immediately gives the proof of Theorem 11,
as we now show.

Proof of Theorem 11. Fix a grid D in Rn. Combining the two propositions shows that SD� is a bounded
invertible linear map on Lp. Indeed, Proposition 13 shows that SD� is one-to-one and Proposition 14 shows

that SD� is onto. The boundedness of S
D
� is immediate from Proposition 13 and the boundedness of

�
SD�
��1

now follows from the Open Mapping Theorem.
Thus dropping the superscript D we have

f = S� (S�)
�1
f =

X
I2D

D
(S�)

�1
f; hI;�

E
h�I;� :

If we set e4�

If �


S�1� f; hI;�

�
h�I;� = 4

�
I

�
S�1� f

�
=


S�1� f; hI;�

� �
��`(I) � hI;�

�
;

then we have

f =
X
I2D

e4�

If =
X
I2D



S�1� f; hI;�

�
h�I;�; for f 2 Lp;

 X
I2D

��� e4�

If
���2! 1

2


Lp(�)

�


 X
I2D

��
S�1� f; hI;�
���2 1

jIj�
1I

! 1
2


Lp(�)

�
S�1� f


Lp(�)
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I2D

j4�
If j
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2
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�
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I2D
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1

jIj�
1I

! 1
2


Lp(�)

� kfkLp(�) ;

which shows in particular that
ne4�

I;�

o
I2D

is a frame for Lp. �

Notation 17. Since the frame
ne4�

I;�

o
I2D

will be used extensively in what follows, we drop the tilde and

write 4�
I;� instead of e4�

I;�, i.e. we rede�ne 4
�
I;�f to be

4�
If �

X
I2D



S�1� f; hI;�

�
h�I;�:

Thus we have inserted the bounded invertible operator S�1� into the inner product above.

2.3.4. The smoothed pseudoprojections. The smoothed operators 4�
I;� are neither self-adjoint, projections

nor orthogonal, but come close as we now show. Recall that

4�
I;�f =

D
(S�;�)

�1
f; hI;�

E
h�I;� ; where h�I;� = �� � hI;� :

Lemma 18. With notation as above and � = �0 � �0, we have�
4�
I;�

�tr
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D
g; h�I;�

E�
(S�;�)

�1
�tr

hI;� ;

and �
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�
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�
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�
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��
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e4�
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D
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E
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D
(S�;�)
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h�I;�; hI;�

E
� 1 and b�I;� �

D
(S�;�)

�2
hI;�; hI;�

E
� 1:

In particular we have

kfkLp �
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1
2
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:
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Proof. The adjoint property follows fromD
4�
I;�f; g

E
=

DD
(S�;�)

�1
f; hI;�

E
h�I;�; g

E
=
D
h�I;�; g

EZ
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EZ
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�
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=
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��
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�tr

hI;� (x)
D
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E�
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�
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�
4�
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�tr
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�
:

The pseudoprojection property follows from�
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�2
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�
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�
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�
4�
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D
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�
I;� f:

However, (S�;�)
�1 is close to the identity map by (1.5), so that using �� = ��0 � ��0 , we obtain

a�I;� =
D
(S�;�)

�1
h�I;�; hI;�

E
�
D
h�I;�; hI;�

E
+ o (1) =

D
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E
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D
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E
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h�0I;�2
L2
+ o (1) � khI;�k2L2 + o (1) � 1:

We also compute�
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=
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E
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Finally,
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X
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D
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hI;� =

h�
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��1itrX
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D
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shows that
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�

3. The extension operator and oscillatory inner products

Given f 2 Lp (�n�1), we de�ne the extension operator E� localized to a cuto¤ function � (x) by

E�f (�) = F (f�n�1) (�) =
Z
Sn�1

f (z) e�iz��� (z) d�n�1 (z) :

If we use a one-to-one onto coordinate patch � : S ! P such that Supp� � P and S is a cube centered at
the origin in Rn�1 with dyadic side length, then we can write

E�f (�) =

Z
P
f (y) e�iy��� (y) d�n�1 (y) =

Z
S

f (� (x)) e�i�(x)��� (� (x))
dx

jdetr� (x)j

=

Z
S

h (x) e�i�(x)��� (x) dx

where

h (x) = f (� (Px)) and � (x) � � (� (x))

jdetr� (x)j :
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Since the map � : S ! P is a di¤eomorphism, we have

khkLp(S) � kfkLp(P) ;

and thus the extension operator E� : Lp (�n�1) ! Lp (Rn) is bounded if and only if the linear map TS :
Lp (S)! Lp (Rn) is bounded, where TS is de�ned by

TSf (�) �
Z
S

K�;� (x; �) f (x) dx =

Z
S

f (x) e�i�(x)��dx; f 2 Lp (S) ;

where K�;� (x; �) � e�i�(x)��:

Now construct (n� 1)-dimensional Alpert wavelets
n
hn�1I;�

o
I2G

on Rn�1 where G is a translation of the

standard dyadic grid on Rn�1 so that S 2 G and the origin is a vertex of �(2)G S (also recall Notation 12),
and de�ne the smooth analogues hn�1;�I;� of these wavelets as in the �rst section above. Then expand f by

the smooth Alpert reproducing formula f = S�;�S
�1
�;�f =

P
I2D

D
S�1�;�f; h

n�1
I;�

E
hn�1;�I;� to get

TSf (�) =

Z
S

K�;� (x; �)

"X
I2G

D
S�1�;�f; h

n�1
I;�

E
hn�1;�I;�

#
dx =

X
I2G

D
S�1�;�f; h

n�1
I;�

EZ
S

K�;� (x; �)h
n�1;�
I;� (x) dx

=
X
I2G

D
S�1�;�f; h

n�1
I;�

EZ
S

e�i�(x)��� (x)hn�1;�I;� (x) dx =
X
I2G

D
S�1�;�f; h

n�1
I;�

EZ
S

e�i�(x)��'�I (x) dx:

In addition we construct n-dimensional Alpert wavelets
�
hnJ;�

	
J2D on R

n, where D is the standard grid on
Rn, together with their smooth analogues hn;�J;� as in the �rst section above. It will be important, at least in
a technical sense, to use the standard grid D on Rn which enjoys the property that the distance from the
origin to a cube J 2 D is at least the side length of J , if the origin is not a vertex of J .

Notation 19. We are now using the index n � 1 or n in the superscript of the notation for an Alpert
wavelet, to denote whether the wavelet lives in S � Rn�1 or in Rn. The index � in the superscript denotes
the smoothness injected by convolution. As in Notation 12, we usually suppress the index a 2 � that runs
over the set of all Alpert wavelets associated with a given cube.

To estimate the operator norm of TS we will use in particular the vanishing moments up to order � � 1
of the wavelets hn�1;�I;� and hn;�J;�,Z

S

hn�1;�I;� (x)x�dx = 0; for 0 � j�j < �;Z
Rn
hn;�J;� (�) �

�d� = 0; for 0 � j�j < �;

along with sharp estimates for oscillatory integrals in which the amplitudes involve smooth Alpert wavelets.
If f is supported in an appropriate small subcube S of 14S0, and has vanishing moments up to order less than
�, then we claim that we may restrict the Alpert wavelets hn�1I;� (x) and hn�1;�I;� arising in the reproducing
formula to those with I � 1

2S, i.e.

f (x) = S�;�S
�1
�;�f (x) =

X
I2G: I� 1

2S

D
S�1�;�f; h

n�1
I;�

E
hn�1;�I;� (x) :

A standard reduction: We begin by noting that if Q is any cube in Rn, then the Fourier multiplier
1Q is bounded on Lp for all 1 < p < 1. If ' is any smooth function on the sphere Sn�1, then the
Fourier transform F ('�n�1) of the smooth surface measure '�n�1 has decay

jF ('�n�1) (�)j . (1 + j�j)�
n�1
2 ;

by e.g. [Ste2, Theorem 1 page 348]. Since this function is in Lp for all p > 2n
n�1 , it follows that

(3.1) kF (1Q'�n�1)kLp . kF ('�n�1)kLp . 1; for all p >
2n

n� 1 :
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We now claim that for the purpose of proving the probabilistic Fourier extension conjecture, it su¢ ces
to prove the bilinear inequality jhTSf; gij . kfkLp kgkLp0 for functions f 2 Lp that satisfy

(3.2) f (x) =
X
I�S0

D
S�1�;�f; h

n�1
I;�

E
hn�1;�I;� (x) ;

i.e. where the Alpert Support of f is contained in the dyadic subcubes of S0 � 1
4S. Indeed, it su¢ ces

to consider functions ef 2 Lp with spatial support in S0 � 1
4S, where S0 is as in (1.10) above. Then

we can reduce to the case where ef has its Alpert support contained in the dyadic subcubes of S0,
simply by subtracting o¤ from f an appropriate polynomial of degree � in x restricted to S0, and
appealing to (3.1). But since S�;� is bounded and invertible on Lp, we can then further reduce to
testing the bilinear inequality over functions of the form

f = S�;� ef = S�;�
X
I�S0

D ef; hn�1I;�

E
hn�1I;� =

X
I�S0

D
S�1�;�f; h

n�1
I;�

E
hn�1;�I;�

as in (3.2), where we have used S�;�h
n�1
I;� = hn�1;�I;� in the �nal equality.

We will now estimate the oscillatory inner product

(3.3)
D
TSh

n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

�Z
S

e�i�(x)��hn�1;�I;� (x) dx

�
hn;�J;� (�) d�;

by considering the decomposition of the pairs (I; J) of dyadic cubes in P given in (1.12) of the introduction,

P = P0 [
1[
m=0

Pm [ R :

Thus P0 consists of pairs that are aligned radially away from the origin, Pm consists of pairs that are radially
staggered at angle roughly 2�m, and R consists of pairs where I is �close�to the larger J .
Regarding P0, our intuition tells us that when the approximate wavelength 1

j�j of the exponential e
�ix��

does not exceed the depth 1
`(I)2

of the spherical �cap�� (I), and the side length ` (J) of the cube J supporting

hn;�J;� is approximately the distance of the sphere from the origin, namely 1, then we should not expect to
derive any cancellation from the presence of the exponential e�i�(x)��. Thus the only estimate on the inner
product in this case should be the trivial one, in which the oscillatory factor e�i�(x)�� is discarded,

(3.4)
���DT�hn�1;�I;� ; hn;�J;�

E��� � hn�1;�I;�


L1

hn;�J;�
L1
:

While this crude estimate will ultimately prove adequate in the case when ` (J) � 1, 1
`(I) .

1
dist(0;J) �

1
j�j .

1
`(I)2

and I and J are suitably aligned in the same direction, we must obtain improvements with geometric

decay in parameters jkj and d � 0 when

` (J) = 2k and
2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 ` (J) . 1:

Moreover, when I and J are not suitably aligned, and there is insu¢ cient oscillation within the inner product,
we will need to invoke interpolation arguments with L2 and average L4 estimates when acting on certain
Alpert pseudoprojections.
When k > 0, we will gain geometically if we integrate by parts radially in � using the smoothness of

the wavelets hn;�J;�, and when k < 0, we will gain geometrically in jkj using the large number of vanishing
moments of hn;�J;�. When d > 0, we will use the classical asymptotic formula for the smooth surface carried

measure hn�1;�I;� with sharp bounds on the derivatives of hn�1;�I;� to derive gain. Regarding Pm, we will use in
addition a tangential integration by parts decay principle since the critical point of the phase no longer lies
in the support of the amplitude (hence stationary phase is not needed here). This intuition suggests that we
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further decompose the index set P0 of pairs as

P0 =
[
k2Z

1[
d=1

Pk;d0 ; where(3.5)

Pk;d0 �
(
(I; J) 2 P : J � K (I) , ` (J) = 2k, and 2d�1

` (I)
2 � dist (0; J) =

2d+1

` (I)
2

)
;

for k; d 2 Z, and the index set Pm of pairs as

Pm =
[
k2Z

1[
d2Z

Pk;dm ; where(3.6)

Pk;dm �
n
(I; J) 2 Pm : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
;

for k; d 2 Z and m 2 N. For m 2 N and d � 0, a di¤erent pigeonholing that respects resonance is required,
which we defer until needed in Section 8. Similarly, we defer further pigeonholing of R until needed in
Section 7.
Next we introduce a standard change of variable that simpli�es calculations, and then derive the well-

known asymptotic formula we will use with sharp estimates on the remainder term6.

3.1. Change of variables. We write z = (z0; zn) for z 2 Rn, and set

(3.7) � (x; y) = � (x) � � (y) ; where � (x) =
�
x;

q
1� jxj2

�
and x 2 Rn�1;

and de�ne the variables (y; �) by

(3.8) y = ��1
�
�

j�j

�
=

�0

j�j and � = j�j ; i.e.
�
�0; �n

�
= � = �� (y) =

�
�y; �

q
1� jyj2

�
;

since then

�� (x; y) = j�j� (x) � � (y) = j�j� (x) � �j�j = �(x) � � :

We now claim that

det
@
�
�0; �n

�
@ (y; �)

=
j�jn

�n
:

Indeed, we have (y; �) =
�
�0

j�j ; j�j
�
and � = �

�
y;

q
1� jyj2

�
, and so

@ (y1; :::; yn�1; �)

@
�
�1; :::; �n�1; �n

� =
2666664

@
@�1

�1
j�j � � � @

@�n�1

�1
j�j

@
@�n

�1
j�j

...
. . .

...
...

@
@�1

�n�1
j�j � � � @

@�n�1

�n�1
j�j

@
@�n

�n�1
j�j

@
@�1

j�j � � � @
@�n�1

j�j @
@�n

j�j

3777775

=

2666664
1
j�j �

�21
j�j3 � � � � �1�n�1

j�j3 � �1�n
j�j3

...
. . .

...
...

� �1�n�1
j�j3 � � � 1

j�j �
�2n�1
j�j3 � �n�1�n

j�j3
�1
j�j � � � �n�1

j�j
�n
j�j

3777775 =
1

j�j3

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 j�j

2 � � � �n�1 j�j
2

�n j�j
2

37775

6These estimates are undoubtedly in the literature, but since the author was unable to �nd the precise form needed here,
we include the classical arguments below.
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where

det

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 j�j

2 � � � �n�1 j�j
2

�n j�j
2

37775

= j�j2 det

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 � � � �n�1 �n

37775 = j�j2 �n j�j2(n�1) = �n j�j
2n
;

by an induction on n 2 N.
Thus we have

det
@ (y1; :::; yn�1; �)

@
�
�1; :::; �n�1; �n

� =
1

j�j3n
det

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 j�j

2 � � � �n�1 j�j
2

�n j�j
2

37775
=

1

j�j3n
�n j�j

2n
=

�n
j�jn ;

as claimed. Hence

det
@
�
�1; :::; �n�1; �n

�
@ (y1; :::; yn�1; �)

=
j�jn

�n
=

�n

�

q
1� jyj2

=
�n�1q
1� jyj2

;

and the change of variable � ! (y; �) gives,D
TSh

n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

ei�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
Rn

Z
Rn�1

e
i�(x)��

�
y;
p
1�jyj2

�
hn�1;�I;� (x)hn;�J;�

�
�

�
y;

q
1� jyj2

��
det

@
�
�1; :::; �n�1; �n

�
@ (y1; :::; yn�1; �)

dxdyd�

=

Z
R

Z
Rn�1

Z
Rn�1

ei��(x)��(y)hn�1;�I;� (x)hn;�J;�

�
�y; �

q
1� jyj2

�
�n

�

q
1� jyj2

dxdyd�

=

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)'�I (x)
e �J (y; �) dxdyd�;

where we are now using the convenient notation,

� (x; y) � � (x) � � (y) ;(3.9)

'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) � hn;�J;�

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

Note that if � 2 J , then (y; �) 2 �tanJ � �radJ .

3.2. Sharp bounds for oscillatory integrals. Here we review the well known asymptotics for oscillatory
integrals, see e.g. [Ste2, Chapter VIII], paying close attention to the constants involved. We emphasize that
the results in this subsection are well known, but as we could not �nd in the literature the exact form of the
estimate for the remainder term that we use here, we reproduce many familiar arguments below.
We consider the oscillatory function Ia�;� : Rd � (0;1)! C given by

Ia�;� (y; �) �
Z
Rn
ei��(x;y)a� (x; y) dx;

de�ned for � > 0 and y 2 U where U is an open subset of Rd, and we call � (x; y) the phase and a� (x; y)
the amplitude of Ia�;�. We will follow a treatment of asymptotics for such oscillatory integrals given in a
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Rice University blog [blogs.rice], but we will obtain a sharp estimate for amplitudes of the type that arise in
the smooth Alpert expansions.
We use three familiar preparatory lemmas. The �rst of these is the Morse Lemma, which will be applied to

the phase function � (x; y), in order to transform � into a nonsingular quadratic form in x at a nondegenerate
critical point in x. The second lemma gives high order decay bounds in the special case when there are no
critical points in x of the phase function that lie in the support of the amplitude, and the third calculates
the oscillatory integral for a quadratic form.

Lemma 20 (Morse Lemma). Suppose y0 2 U � Rd and x0 is a nondegenerate stationary point for � (�x; y0).
Then there exists a neighbourhood V � U of y0, a neighbourhood W of x0, a smooth function

X : V !W;

and a smooth function
	 : V !W � V ! Rn;

such that

(1) For every y 2 V , X (y) is the unique stationary point, which is also nondegenerate, for � (�x; y0) in
W .

(2) For every y 2 V , the map W ! Rn de�ned by x! 	(x; y) is a di¤eomorphism onto its image and

(3.10) � (x; y) = � (X (y) ; y) +
1

2
	 (x; y)

tr �
@2x� (X (y) ; y)

�
	(x; y) :

Furthermore,

(3.11) 	(X (y) ; y) = 0 and @x	(X (y) ; y) = Idn :

(3) Finally, we may take W = B (x0; a) for some small positive constant

a =
cn

maxj�j�3 sup(x;y)2(Supp a)�U j@�x� (x; y)j
;

where  > 0 satis�es infy
�
@2x� (X (y) ; y)

�
<  Idn.

Proof. For any y, the stationary points are the solutions of the equation 0 = @x� (x; y), and by the nondegen-
eracy of the critical point, and the Implicit Function Theorem, this equation uniquely de�nes x as a function
of y in some neighbourhood N of (x0; y0). Since in our application, � (x; y) is homogeneous of degree zero
in y, we may assume this here as well. Then

�
@2x� (X (y) ; y)

�
<  Idn�1 for some  > 0 depending only

on �, and so we may take N = B ((x0; y0) ; a
0) where a0 = c0n

maxj�j�3 sup(x;y)j@�x �(x;y)j
for some small positive

constant c0n, depending only on the dimension n.
Now we take the Taylor expansion of � (x; y) in x about X (y) to obtain, upon noting that the �rst

derivatives in the Taylor expansion vanish at the critical point X (y),

� (x; y) = � (X (y) ; y) +
1

2
(x�X (y))trB (x; y) (x�X (y)) ;

where B (x; y) �
Z 1

0

(1� s) @2x� (sx+ (1� s)X (y) ; y) ds:

We now construct a matrix-valued function R (x; y) such that

	(x; y) � R (x; y) (x�X (y))

has the properties listed in (2) above. Indeed, this 	 will satisfy (3.10) provided

(3.12) R (x; y)
tr
@2x� (X (y) ; y)R (x; y)�B (x; y) = 0; for (x; y) 2 N :

We interpret the left hand side of (3.12) as a mapping fromMn (R)R�Rnx � Vy to Sn (R), whereMn (R) is
the set of n� n matrices and Sn (R) is the subset of symmetric matrices. Taking the di¤erential of the left
hand side of (3.12) with respect to the variable R and evaluated at the identity matrix Idn, we obtain that
the derivative map,

dR! (dR)
tr
@2x� (X (y) ; y) + @

2
x� (X (y) ; y) (dR) ;
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is surjective, since whenever C 2 Sn (R) is symmetric,�
1

2

�
@2x� (X (y) ; y)

��1
C

�tr
@2x� (X (y) ; y) + @

2
x� (X (y) ; y)

�
1

2

�
@2x� (X (y) ; y)

��1
C

�
=
1

2
C +

1

2
C = C:

Thus by the Implicit Function Theorem again, there exists a smoothMn (R)-valued function R (x; y) de�ned
on some neighbourhood N0 � N of (x0; y0) that satis�es (3.12) everywhere that it is de�ned. Note that we

may takeN0 = B ((x0; y0) ; a
00) where where a00 = c00n

maxj�j�3 sup(x;y)j@�x �(x;y)j
. Possibly shrinking even more the

neighbourhood N0 to N1, completes the proof that there is a neighbourhood W of x0 such that x! 	(x; y)
is a di¤eomorphism from W onto its image, and that (3.10) holds, and that 	(X (y) ; y) = 0. Note that we
may take W = B (x0; a) where a = cn

maxj�j�3 sup(x;y)j@�x �(x;y)j
. The remaining assertion @x	(X (y) ; y) = Idn

is straightforward since,

@x jx=X(y) 	(X (y) ; y) = [@xR (x; y) (x�X (y)) +R (x; y)] jx=X(y)= R (X (y) ; y) = Idn ;

because we evaluated the di¤erential in R of the left hand side of (3.12) at the identity matrix Idn. �

Recall that

Ia�;� (y; �) �
Z
Rn
ei��(x;y)a� (x; y) dx;

where � 2 C1 (Rnx � Uy) and a� 2 C1 (Rnx � Uy). We will need the following estimate in the absence of
critical points for x! � (x; y).

Lemma 21. Suppose that the Rn-valued function @x� (x; y) is nonvanishing on (Supp a) � U . Then for
every N 2 N and compact K b U we have

sup
y2K

jIa;� (y; �)j � CN;K
1

�N

X
j�j�N

sup
y2K

k@�x a�kL1(Rn) ; for (y; �) 2 (Supp a)� U:

Proof. For any M 2 N we have

Ia�;� (y; �) =
Z
Rn

h@x� (x; y) ; @xiM ei��(x;y)�
i� j@x� (x; y)j2

�M a� (x; y) dx;

and integrating by parts gives

sup
y2K

jIa�;� (y; �)j � sup
y2K

1

�N

Z
Rn

������
*
@x;

@x� (x; y)

j@x� (x; y)j2

+N
a� (x; y)

������ dx
� CN;K

1

�N

X
j�j�N

sup
y2K

Z
Rn
j@�x a� (x; y)j dx

= CN;K
1

�N

X
j�j�N

sup
y2K

k@�x a�kL1(Rn)�L1(Rn) :

�

The �nal preparatory lemma is the calculation of an oscillatory integral for a quadratic form.

De�nition 22. For a tempered distribution u 2 S (Rn), we have

bu (�) = F (u) (�) = Z
Rn
e�ix��u (x) d (x) :

Lemma 23. Let A 2Mn (Rn) be symmetric and nondegenerate with signature sgn (A). Then the tempered
distribution eix

trAx has Fourier transform given by,

(3.13) F
�
eix

trAx
�
(�) = �

n
2 ei sgn(A)

�
4
e�i

�trA�1�
4p

det (A)
:
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Proof. The Fourier transform of a Gaussian function e�tjxj
2

is given by

F
�
e�tjxj

2
�
(�) = �

n
2
e�

j�j2
4t

t
n
2

; for all t > 0.

Now note that both sides of the above identity extend to analytic functions of t in the right half plane
ft 2 C : Re t > 0g. A standard limiting argument and orthogonal change of variables gives the formula
(3.13). �

3.3. The main oscillatory integral bound. Here is the main oscillatory integral bound.

Remark 24. In the application of stationary phase to bound the below form in Section 6, we won�t actually
use the oscillatory term ei��(X(y);y) in the asymptotic formula below, and instead we only need the estimates
of the modulus of Ia�;� (y; �) that follow from the asymptotic formula using

��ei��(X(y);y)�� = 1. The reason
for this is that when dealing with the below subform Bk;dbelow (f; g) with k; d � 0 large, we can �rst apply radial
integration by parts in the inner product, and second apply stationary phase to the resulting inner product
with a new amplitude. This way the geometric gain in k has been achieved without using the oscillatory term
ei��(X(y);y). If we were to instead apply stationary phase �rst, then we would need ei��(X(y);y) for integration
by parts afterward.

Theorem 25. Suppose that a� (x; y) 2 C1c
�
Rnx � Rdy

�
, y0 2 U � Rd, and that � (�x; y0) has exactly one

nondegenerate stationary point on the support of a at x0. Take V , W , X and 	 as in the Morse Lemma.
Then for every M 2 N, there is a positive constant CM depending on M and � such that,

Ia�;� (y; �) = Pa�;� (y; �) +
MX
`=1

P
(`)
a�;�

(y; �) +R
(M+1)
a�;�

(y; �) ;

where

Pa�;� (y; �) =

�
2�

�

�n
2 ei sgn[@

2
x�(X(y);y)]�4+��(X(y);y)p
j@2x� (X (y) ; y)j

a� (X (y) ; y) ;

P
(`)
a�;�

(y; �) =
i`

(2�)
`
`!

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
��
@x

1

det @x	(x; y)

�
B (y)

�1 1

det @x	(x; y)
@x

�`
a� (x; y)

det [@x	(x; y)]
jx=X(y);

and

R
(M+1)
a�;�

(y; �) =

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
Z
F�1z

0B@
24
D
i@z; B (y)

�1
@z

E
2�

35M+1

f

1CA (�)RM+1

 
�i �

trB (y)
�1
�

2�

!
d�;

where

f (z; y; �) �
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

�� ;
and B (y) = @2x� (X (y) ; y), and X (y) is the unique stationary point of � (�x; y) in the support of a, as given
in the Morse Lemma, and �nally,

RM+1 (ib) =

Z 1

0

eitb (ib)
M+1 (1� t)M+1

(M + 1)!
dt; for b 2 R:

The remainder term satis�es the estimate,

(3.14) sup
y2V

���R(M+1)
a�;�

(y; �)
��� � CM�

�n
2�(M+1)

X
j�j��+2(M+1)

k@�x a�kL2(Rnx )�L1(Rd+1y;� )
;
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where � =
�
n
2

�
is the smallest integer greater than n

2 , and if N > M +1+ n
2 , then we also have the alternate

bound,

(3.15) sup
y2V

���R(M+1)
a�;�

(y; �)
��� � CM�

�n
2�M�1

(Id�4x)
N
a�


L1(Rnx )�L1(Rny )

:

Proof. Take V , W , X and 	 as in the Morse Lemma, so that

� (x; y) = � (X (y) ; y) +
1

2
	 (x; y)

tr �
@2x� (X (y) ; y)

�
	(x; y) ; y 2 V:

Using Lemma 21 together with a partition of unity shows that we may assume a� (x; y) is supported in W
for all y 2 V . Thus a change of variables

z = 	(x; y) = 	y (x) ;

gives,

Ia�;� (y; �) =

Z
Rn
ei��(x;y)a� (x; y) dx =

Z
Rn
ei��(	

�1
y z;y) a�

�
	�1y z; y

�
det
�
(@x	)

�
	�1y (z) ; y

��dz
=

Z
Rn
e
i�

�
�(x0;y0)+	(	�1

y z;y)
tr @2x�(X(y);y)

2 	(	�1
y z;y)

�
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z) ; y

��dz
=

Z
Rn
e
i�

�
�(x0;y0)+z

tr @
2
x�(X(y);y)

2 z

�
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z) ; y

��dz
= ei��(x0;y0)

Z
Rn
ei�z

tr @
2
x�(X(y);y)

2 zf (z; y; �) dz;

where

f (z; y; �) �
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

�� :
Now write

(3.16) B (y) =
�
@2x�

�
(X (y) ; y) ;

and apply the Fourier transform F and its inverse F�1 in the variable z and its dual variable � to obtain

Ia�;� (y; �) = ei��(x0;y0)
Z
Rn
Fz
�
ei�z

tr B(y)
2 z
�
(�) F�1z (f (z; y)) (�) d�:

Using Lemma 23 with A = �
2B (y), we have,

Ia�;� (y; �) = ei��(x0;y0)
�
n
2 ei sgnB(y)

�
4q

det �2B (y)

Z
Rn
e�i

�trB(y)�1�
2� F�1z (f (z; y)) (�) d�

=

�
2�

�

�n
2 ei sgnB(y)

�
4 ei��(x0;y0)p

detB (y)

Z
Rn
e�i

�trB(y)�1�
2� F�1z (f (z; y)) (�) d�:

Next we use Taylor�s formula with integral remainder to obtain that for anyM > 0,

eib =
MX
`=0

(ib)
`

`!
+RM+1 (ib) ;

where

RM+1 (ib) =

Z 1

0

eitb (ib)
M+1 (1� t)M+1

(M + 1)!
dt and jRM+1 (ib)j �

jbjM+1

(M + 2)!

and so with

b = ��
trB (y)

�1
�

2�
;
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we have

Ia�;� (y; �)�
�
2�

�

� d
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

Z
Rn

MX
`=0

i`

(2�)
`
`!
F�1z

�D
@trz B (y)

�1
@z

E`
f

�
(�) d�(3.17)

=

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
Z
Rn
F�1z

0B@
24
D
i@trz B (y)

�1
@z

E
2�

35M+1

f

1CA (�)RM+1

 
�i �

trB (y)
�1
�

2�

!
d�:

Finally, using the Fourier inversion formula
R
Rn F

�1 (g) (z) dz = g (0), together with the identities

	y (X (y)) = 	 (X (y) ; y) = 0;

	�1y (0) = X (y) ;

det @x	(X (y) ; y) = det Idn = 1;

from part (2) of the Morse Lemma, we obtainZ
Rn
F�1z

�D
@trz B (y)

�1
@z

E`
f

�
(�) d� =

D
@trz B (y)

�1
@z

E`
f (0) ; 0 � ` �M:

Now when ` = 0 we have

f (0) =
a�
�
	�1y (0) ; y

�
det
�
@x	

�
	�1y (0) ; y

�� = a� (X (y) ; y)

det [@x	(X (y) ; y)]
= a� (X (y) ; y) :

From the change of variable (x; y) ! (z; w) where z = 	(x; y) and w = y, the Jacobian matrix in block
form is,

@ (z; w)

@ (x; y)
=

�
@xz @yz
@xw @yw

�
=

�
@x	(x; y) @y	(x; y)

0n Idn

�
;

and so�
@zx @wx
@zy @wy

�
=
@ (x; y)

@ (z; w)
=

�
@x	(x; y) @y	(x; y)

0n Idn

��1
=

1

det @x	(x; y)

�
Idn �@y	(x; y)
0n @x	(x; y)

�
:

Thus we have by the chain rule,�
@z
@w

�
=

�
@zx @zy
@wx @wy

��
@x
@y

�
=

1

det @x	(x; y)

�
Idn �@y	(x; y)
0n @x	(x; y)

�tr�
@x
@y

�
=

1

det @x	(x; y)

�
Idn 0n

�@y	(x; y) @x	(x; y)

��
@x
@y

�
=

1

det @x	(x; y)

�
@x

�@y	(x; y) @x + @x	(x; y) @y

�
;

i.e.,

(3.18) @z =
1

det @x	(x; y)
@x:

Thus when ` = 1 we haveD
@trz B (y)

�1
@z

E
f (0) =

 
@trz B (y)

�1
@z

a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z) ; y

��! (0)
=

 (�
@x

1

det @x	(x; y)

�tr
B (y)

�1 1

det @x	(x; y)
@x

)
a� (x; y)

det [@x	(x; y)]

!
jx=X(y)

= L (y; @x)
a� (x; y)

det [@x	(x; y)]
jx=X(y);
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where

L (y; @x) �
�
@x

1

det @x	(x; y)

�tr
B (y)

�1 1

det @x	(x; y)
@x

is a second order di¤erential operator in x with coe¢ cients depending on both x and y. More generally, the
same calculation shows that for 0 � ` �M , we have,

D
@z; B (y)

�1
@z

E`
f (0) =

0@(�@x 1

det @x	(x; y)

�tr
B (y)

�1 1

det @x	(x; y)
@x

)`
a� (x; y)

det [@x	(x; y)]

1A jx=X(y)

= L (y; @x)
` a� (x; y)

det [@x	(x; y)]
jx=X(y) :

Thus the identity (3.17), together with the bound
���gM+1

�
�i �

trB(y)�1�
2�

���� � 1
(M+1)! , implies that,���R(M+1)

a�;�
(y; �)

��� � CM�
�n

2�(M+1)

F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
RM+1


L1(Rn� )

(3.19)

� CM;n�
�n

2�(M+1)
X

j�j��+2(M+1)

k@�x a�kL2(Rnx )�L1(Rny ) ;

where in the last line we have used Cauchy-Schwarz, the derivative identities for F , and Plancherel�s theorem
with the smallest integer � =

�
n
2

�
greater than n

2 . Indeed,Z
Rn

���bh (�)��� d� =

Z
Rn

���bh (�)��� �1 + j�j2�� �1 + j�j2��� d�
�

�Z
Rn

����1 + j�j2�� bh (�)���2 d�� 1
2
�Z

Rn

�
1 + j�j2

��2�
d�

� 1
2

� Cm

�Z
Rn
j(Idn�4x)

�
h (x)j2 dx

� 1
2

;

for the function

h (x) =
D
@z; B (y)

�1
@z

EM+1

f

=

��
@x

1

det @x	(x; y)

�
B (y)

�1 1

det @x	(x; y)
@x

�M+1
a� (x; y)

det [@x	(x; y)]
:

To prove the alternate bound (3.15), we use the estimate
���RM+1

�
�i �

trB(y)�1�
2�

���� . ��� �trB(y)�1�2�

���M+1

to

obtain, F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
RM+1


L1(Rn� )

� 1

(M + 1)!

F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
L1(Rn� )

.
�
1

�

�M+1 Z
Rn
j�j2(M+1) j(Fzf) (�)j d�;

where

(Fzf) (�) =

 
Fz

a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

��! (�) = Fz'y (�) ;
'y (z) �

a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

�� :
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From the estimate

��Fz'y (�)�� =

����Z
Rn
eix��'y (x) dx

���� =
������
Z
Rn

24 Id�4x

1 + j�j2

!N
eix��

35'y (x) dx
������

=
1�

1 + j�j2
�N ����Z

Rn
eix�� (Id�4x)

N
'y (x) dx

���� � (Id�4x)
N
'y


L1

1�
1 + j�j2

�N ;
we have for N > M + 1 + n

2 that�
1

�

�M+1 Z
Rn
j�j2M+2 j(Fzf) (�)j d� .

�
1

�

�M+1 (Id�4x)
N
'y


L1(Rnx )�L1(Rny )

Z
Rn

j�j2M+2�
1 + j�j2

�N d�
.
�
1

�

�M+1 (Id�4x)
N
'y


L1(Rnx )�L1(Rny )

.
�
1

�

�M+1 (Id�4x)
N
a�


L1(Rnx )�L1(Rny )

:

We conclude that,���R(M+1)
a�;�

(y; �)
��� � CM�

�n
2�(M+1)

F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
gM+1


L1(Rn� )

� CM�
�(M+1+n

2 )
(Id�4x)

N
a�


L1(Rnx )�L1(Rny )

; for N > M + 1 +
n

2
:

�

Remark 26. The identity @x	(X (y) ; y) = Idn implies that det [@x	(X (y) ; y)] = 1. Thus for ` = 1 we
have

@x

�
1

det @x	(x; y)
B (y)

�1 1

det @x	(x; y)
@x

a� (x; y)

det [@x	(x; y)]

�
= B (y)

�1
n
�2 (det @x	(x; y))�3 @x det @x	(x; y) + @2x

h
(det [@x	(x; y)])

�1
a� (x; y)

io
;

where @2x
h
(det [@x	(x; y)])

�1
a� (x)

i
is

2 (det [@x	(x; y)])
���3@x det @x	(x; y)��2 a� (x; y)

� (det [@x	(x; y)])�2 @2x det @x	(x; y) a� (x; y)� (det [@x	(x)])
�2
@x det @x	(x; y) @xa� (x; y)

� (det [@x	(x; y)])�2 @x det @x	(x; y) @xa� (x; y) + (det [@x	(x; y)])�1 @2xa� (x; y) ;

and so when we evaluate at x = X (y), we obtain that (det [@x	(x; y)])
�1
@2xa (x; y) equals @

2
xa (X (y) ; y),

and hence,

P(1)a;� (y; �) =
i`

(2�)
`
`!

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

n
@2xa (X (y) ; y) +O

�
k@xa�kL1(Rnx ) + ka�kL1(Rnx )

�o
:

Thus every gain of 1
� costs two derivatives of a� in x (ignoring the contribution from k@xa�kL1(Rnx ) +

ka�kL1(Rnx )), which dictates our de�nition of the parameter d in the subform (4.3) below.

Note that we can write the formula for P(`)a�;� (y; �) compactly as

(3.20) P
(`)
a�;�

(y; �) =

�
2�

�

�n
2 i`

(2�)
`
`!

ei[sgnB(y)
�
4+��(X(y);y)]

p
detB

��
L�1@xBL

�1@x
	` a (x; y)

detL

�
jx=X(y);

where

(3.21) L � @x	(x; y) and B � B (y) =
�
@2x�

�
(X (y) ; y) :
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4. Starting the proof of the probabilistic extension conjecture

Our initial splitting of the bilinear form is modeled after that in two weight testing theory using (3.5) and
(3.6),

hTSf; gi =
X

(I;J)2G�D

D
TS 4n�1;�

I;� f;4n;�
J;�g

E

=

8<: X
(I;J)2P0

+
X

(I;J)2R

+
1X
m=1

X
(I;J)2Pm

9=;DTS 4n�1;�
I;� f;4n;�

J;�g
E

� Bbelow (f; g) + Babove (f; g) + Bdisjoint (f; g) :

We will further decompose these forms in the sections below according to the oscillation properties of the
inner productD

TS 4n�1;�
I;� f;4n;�

J;�g
E
=
D
TSh

n�1;�
I;� ; hn;�J;�

ED
(S�;�)

�1
f; hn�1I;�

ED
(S�;�)

�1
g; hnJ;�

E
:

(1) The below form Bbelow (f; g) turns out to be di¢ cult to deal with by virtue of the need to com-
bine stationary phase with either integration by parts or moment vanishing, and only its subform
Bk;dbelow (f; g) for k; d � 0 requires the strict inequality p > 2n

n�1 . Moreover, the subforms with d � 0
can be controlled by relatively simple arguments when p > 2n

n�1 .
(2) The above form Babove (f; g) is less critical and considerably easier to handle in that it doesn�t use

stationary phase, and is in fact bounded for all 1 < p <1.
(3) The disjoint form Bdisjoint (f; g) is handled similarly in some places, and made easier in those places

due to the fact that stationary phase is not needed, because the critical point of the phase lies
outside the support of the amplitude. However, in those di¢ cult places where large numbers of
inner products are resonant, i.e. without either appropriate oscillation or smoothness, the use of
probability is required in L2 and L4 estimates.

We have ���DTS 4n�1;�
I;� f;4n;�

J;�g
E
!

��� = ���DTShn�1;�I;� ; hn;�J;�

E��� ���D�S��;���1 f; hn�1I;�

E��� ���D�S!�;���1 g; hnJ;�E���(4.1)

�

8<:
���DTS �hn�1;�I;�

�
; hn;�J;�

E
!

���p
jIj jJ j

9=;
�Z

I

���4n�1;�
I;� f (x)

��� d� (x)��Z
J

���4n;�
J;�g (�)

��� d! (�)� ;
since Z

I

���4n�1;�
I;� f (x)

��� d� (x) =

Z
I

���D(S�;�)�1 f; hn�1I;�

E
hn�1;�I;�

��� d� (x)(4.2)

�
���D�S��;���1 f; hn�1I;�

E��� hn�1;�I;�


L1(�)

�
���D(S�;�)�1 f; hn�1I;�

E���pjIj;Z
J

���4n;�
J;�g (�)

��� d! (�) �
���D(S�;�)�1 g; hnJ;�E���pjJ j:

We now turn to estimating the inner productD
TS

�
hn�1I;�

�
; hnJ;�

E
=

Z
Rn

�Z
S

ei�(x)��hn�1;�I;� (x) dx

�
hn;�J;� (�) d�;

and then using these inner product estimates, we will bound the two bilinear forms Bbelow (f; g) and
Babove (f; g), along with some of the subforms of Bdisjoint (f; g).
Note that the small positive constant � in the construction of the smooth Alpert wavelets is �xed through-

out the estimates below, and so powers of 1� depending on n and � will often be absorbed into the notation
of approximate inequality ..

Notation 27. In an inner product of the form hTS'; i, we refer to ' as the amplitude function, and to  
as the pairing function.
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4.1. Pigeonholing into bilinear subforms. Recall the decomposition (with bounded overlap) of the pairs
(I; J) 2 G � D of dyadic cubes introduced in (1.12),

G � D = P0 [
1[
m=0

Pm [ R ;

where

P0 � f(I; J) 2 G � D : �tan (J) � � (CpseudoI)g ;
Pm �

�
(I; J) 2 G � D : 2m+1I � S and �tan (J) � �

�
2m+1CpseudoI

�
n � (2mCpseudoI)

	
; m 2 N ;

R � f(I; J) 2 G � D : � (I) � �tan (CpseudoJ)g :

In treating the below form Bbelow (f; g), we will consider the inner productsD
T� 4n�1;�

I;� f;4n;�
J;�g

E
=

Z
Rn

Z
Rn�1

4n�1;�
I;� f (x) e�i�(x)��dx4n;�

J;� g (�) d� =
D
T�h

n�1;�
I;� ; h�;!J;�

ED
f; hn�1;�I;�

ED
g; hn;�J;�

E
;D

T�h
n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

hn�1;�I;� (x) e�i�(x)��dxhn;�J;� (�) d�;

for (I; J) 2 P0 � G � D, and as in (3.5), we further decompose the index set P0 of pairs by pigeonholing
the side length of J and its distance from the origin relative to 1

`(I)2
, the reciprocal of the �depth�of the

spherical �cap�� (I):

P0 =
[
k2Z

1[
d2Z

Pk;d0 ; where

Pk;d0 �
n
(I; J) 2 P0 : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
,

for k; d 2 Z:

Then we de�ne the associated subforms,

(4.3) Bk;dbelow (f; g) �
X

(I;J)2Pk;d
0

D
TSh

n�1;�
I;� ; hn;�J;�

E
:

We decompose the disjoint form Bdisjoint (f; g) into subforms B
k;d;m
disjoint (f; g) similar to that done for the

below form Bbelow (f; g). Recall that in (3.6), for each m � 0, we decomposed the index set

Pm �
�
(I; J) 2 G � D : 2m+1I � S and �tan (J) � �

�
2m+1CpseudoI

�
n � (2mCpseudoI)

	
; m 2 N ;

of pairs by pigeonholing the side length of J and its distance from the origin relative to 1
`(I)2

, the reciprocal

of the �depth�of the spherical set � (I):

Pm =
[
k2Z

1[
d2Z

Pk;dm ; where

Pk;dm �
n
(I; J) 2 Pm : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
,

for k; d 2 Z;

and now we de�ne the disjoint subforms,

(4.4) Bk;d;mdisjoint (f; g) �
X

(I;J)2Pk;d
m

D
TS 4n�1;�

I;� f;4n;�
J;�g

E
:

We point out that in those inner products in the disjoint form with resonance, such as when k = 0 and
m = �d, we need analogues for smooth Alpert wavelets of the traditional L2 and L4 estimates averaged over
involutive smooth Alpert multipliers. Finally, we write

Bupperdisjoint (f; g) �
X
k2Z

X
d�0

X
m2N

Bk;d;mdisjoint (f; g) and B
lower
disjoint (f; g) �

X
k2Z

X
d<0

X
m2N

Bk;d;mdisjoint (f; g) :
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We defer the analogous pigeonholed decompositions for the above form Babove (f; g) until needed, and now

we turn to the four principles of decay used on the smooth Alpert inner products
D
TSh

n�1;�
I;� ; hn;�J;�

E
, followed

in the next subsection with the interpolation estimates.

4.2. Decay principles. We introduce four di¤erent principles of decay in the oscillatory kernel of the Fourier
transform, namely

(1) radial integration by parts,
(2) moment vanishing of smooth Alpert wavelets (for both hn�1;�I;� and hn;�J;�),
(3) stationary phase of oscillatory integrals,
(4) and tangential integration by parts.

These four principles of decay will be used as building blocks for compound principles of decay, which are
obtained by iterating the exact formulas for each principle, before taking absolute values inside the resulting
integrals, in order to obtain estimates. These estimates are then used with square function techniques as in
[SaWi] to bound the three forms Bbelow (f; g), Bdisjoint (f; g) and Babove (f; g). However, in order to handle
resonant subforms of Bdisjoint (f; g), we require an additional decay principle involving interpolation of L2

and L4 estimates for smooth Alpert pseudoprojections, that is described in the next subsection.
Our baseline is the following rather trivial L1 estimate, which we refer to as the crude estimate,���DTShn�1;�I;� ; hn;�J;�

E��� �
hn�1;�I;�


L1(�)

hn;�J;�
L1
�
p
jIj jJ j ;(4.5) ���DT� 4n�1;�

I;� f;4n;�
J;�g

E
!

��� �
4n�1;�

I;� f

L1

4n;�
J;�g


L1
�
p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� ;
where we have used (4.2) at the end of the second line.

4.2.1. Radial integration by parts. First we improve upon the crude estimate (4.5) when (I; J) 2 P k;00 with
k > 0, i.e. ` (J) = 2k, namely we show that���DTShn�1;�I;� ; hn;�J;�

E��� � CN2
�kN

hn�1;�I;�


L1

hn;�J;�
L1
� 2�kN

p
jIj jJ j ;(4.6) ���DT� 4n�1;�

I;� f;4n;�
J;�g

E��� � CN2
�kN

4n�1;�
I;� f


L1

4n;�
J;�g


L1
� 2�kN

p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� :
To see this, recall the change of variables (3.8) made earlier,D

TSh
n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

ei�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)'�I (x)
e �J (y; �) dxdyd�;

where

� (x; y) � � (x) � � (y) ;
'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) � hn;�J;�

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

We use the formula �
1

� (x; y)
@�

�N
ei��(x;y) = ei��(x;y);

to obtain the equality,

(4.7)
D
TSh

n�1;�
I;� ; hn;�J;�

E
=

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)

� (x; y)
N
'�I (x) @

N
�
e �J (y; �) dxdyd�;
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which can then be estimated by���DTShn�1;�I;� ; hn;�J;�

E��� . k'�IkL1 Z
�2J

Z
�1J

���@N� e �J (y; �)��� dyd�(4.8)

. k'�IkL1
Z
�2J

Z
�1J

���@N� e �J (y; �)��� �min� 1

�` (J)
;
1

�

��N
dyd�

�
�

1

�` (J)

�N
k'�IkL1

@N� e �J
L1
� 2�kN k'�IkL1

@N� e �J
L1
� 2�kN

p
jIj jJ j;

which gives both lines in (4.6).

4.2.2. Vanishing moments of smooth Alpert wavelets. Now we improve upon the crude estimate (4.5) when
(I; J) 2 P k;00 with k < 0, i.e. ` (J) = 2k, namely we show that���DTShn�1;�I;� ; hn;�J;�

E��� � C�2
�jkj�

hn�1;�I;�


L1

hn;�J;�
L1
� 2�jkj�

p
jIj jJ j ;(4.9)���DT� 4n�1;�

I;� f;4n;�
J;�g

E
!

��� � C�2
�jkj�

4n�1;�
I;� f


L1

4n;�
J;�g


L1
� 2�jkj�

p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� :
For any entire function f , Taylor�s formula with integral remainder applied to t! f (tz) gives,

f (z) =
��1X
`=0

1

`!

d`

dt`
f (tz) jt=0 +

Z 1

0

�
d�

dt�
f (tz)

�
(1� t)�

�!
dt

=
��1X
`=0

1

`!
f (`) (0) z` +

Z 1

0

f (�) (tz) z�
(1� t)�

�!
dt;

which shows that for any � 2 N and b 2 R, we have

(4.10) eib =
��1X
`=0

(ib)
`

`!
+R� (ib) ;

where

(4.11) R� (ib) =

Z 1

0

eitb (ib)
� (1� t)�

�!
dt and jR� (ib)j �

jbj�

(�+ 1)!
:

We also have ��@`bR� (ib)�� . jbj��`

(�+ 1)!
; for 0 � ` < �;(4.12)

@`bR� (ib) = @`be
ib = i`eib; for ` � �:

Now let cJ denote the center of the cube J and write,

e�i�(x)�� = e�i�(x)�cJ e�i�(x)�(��cJ ) = e�i�(x)�cJ

(
��1X
`=0

(�i� (x) � (� � cJ))`

`!
+R� (�i� (x) � (� � cJ))

)
:

Note that

e�i�(x)�cJR� (�i� (x) � (� � cJ)) =
Z 1

0

e�i�(x)�cJ e�it�(x)�(��cJ ) (�i� (x) � (� � cJ))�
(1� t)�

�!
dt

Since hn;�J;� has vanishing moments up to order less than �, we obtainD
TSh

n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

Z
S

e�i�(x)��hn�1;�I;� (x) dxhn;�J;� (�) d�(4.13)

=

Z
S

e�i�(x)�cJhn�1;�I;� (x)

(Z
Rn

"
��1X
`=0

(�i� (x) � (� � cJ))`

`!
+R� (�i� (x) � (� � cJ))

#
hn;�J;� (�) d�

)
dx

=

Z
S

e�i�(x)�cJhn�1;�I;� (x)

�Z
Rn
R� (�i� (x) � (� � cJ))hn;�J;� (�) d�

�
dx:
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From the bound for R� in (4.11) with b = �� (x) � (� � cJ), we have���DTShn�1;�I;� ; hn;�J;�

E��� �
Z
S

���hn�1;�I;� (x)
��� Z

Rn

j� (x) � (� � cJ)j�

(�+ 1)!

���hn;�J;� (�)��� d�dx(4.14)

. ` (J)
� k'�IkL1 k 

�
JkL1 � 2

�jkj�pjIj jJ j:
4.2.3. Stationary phase with bounds. Now we improve upon the crude estimate (4.5) when (I; J) 2 P 0;d0 with
d � 0, i.e. J � K (I), ` (J) = 1, and ` (I)2 dist (0; J) � 2d, namely we show,���DTShn�1;�I;� ; hn;�J;�

E��� . 2�dn�12  
1 + 2�d

 
1

` (I)
2

!�!p
jIj jJ j ;(4.15)

���DT� 4n�1;�
I;� f;4n;�

J;�g
E
!

��� . 2�dn�12  
1 + 2�d

 
1

` (I)
2

!�!p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� ;
where 0 < � � 1. For this, recall the change of variables in (3.8) and (3.9),D

TSh
n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

ei�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
R

Z
Rn�1

�Z
Rn�1

ei��(x;y)'�I (x) dx

� e �J (y; �) dyd�;
where

� (x; y) � � (x) � � (y) ;
'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) �  �J

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

Applying Theorem 25 with n replaced by n � 1 and a� (x; y) equal to '�I (x), shows that the oscillatory
integral

I'�I ;� (y; �) �
Z
Rn�1

ei��(x;y)'�I (x) dx;

satis�es

I'�I ;� (y; �) = P'�I ;� (y; �) +
MX
`=1

P
(`)

'�I ;�
(y; �) +R

(M+1)

'�I ;�
(y; �) ;

where

P'�I ;� (y; �) =

�
2�

�

�n�1
2 ei sgn[@

2
x�(X(y);y)]�4+��(X(y);y)p

jdetB (y)j
'�I (X (y)) ;

and for 1 � ` �M ,

P
(`)

'�I ;�
(y; �) =

i`

(2�)
`
`!

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
��
@x

1

det @x	(X (y) ; y)

�
B (y)

�1 1

det @x	(X (y) ; y)
@x

�`
'�I (X (y))

det [@x	(X (y) ; y)]
;

and

R
(M+1)

'�I ;�
(y; �) =

�
2�

�

�n�1
2 ei[sgnB(y)

�
4+��(X(y);y)]p

jdetB (y)j

�
Z
F�1z

0B@
24
D
i@z; B (y)

�1
@z

E
2�

35M+1

f

1CA (�) gM+1

 
�i �

trB (y)
�1
�

2�

!
d�;
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and where B (y) = @2x� (X (y) ; y), and X (y) is the unique stationary point of � (�x; y) in the support of a,
as given in the Morse Lemma, and � =

�
n
2

�
is the smallest integer greater than n

2 , and �nally gM+1 (b) =
1
M !

R b
0
et (b� t)M dt for b 2 C. Thus at this point we have the formula,D

TSh
n�1;�
I;� ; hn;�J;�

E
=

Z
R

Z
Rn�1

�Z
Rn�1

ei��(x;y)hn�1;�I;� (x) dx

� b �J (y; �) dyd�(4.16)

=

Z
R

Z
Rn�1

I'�I ;� (y; �)
e �J (y; �) dyd�

In the case � (x; y) � � (x) � � (y) we have X (y) = y and

B (y) = @2x� (x) � � (y) jx=y= @2x

q
1� jxj2 jx=y

q
1� jyj2

=

0B@� 1q
1� jxj2

Idn�1�
xxtr�

1� jxj2
� 3
2

jx=y

1CAq1� jyj2
= � Idn�1�

yytr

1� jyj2
;

so that sgnB (y) = � (n� 1) and

detB (y) = det

26666664
�1� y21

1�jyj2 � y1y2
1�jyj2 � � � �y1yn�1

1�jyj2

� y2y1
1�jyj2 �1� y22

1�jyj2 �y2yn�1
1�jyj2

...
. . .

...

�yn�1y1
1�jyj2 �yn�1y1

1�jyj2 � � � �1� y2n�1
1�jyj2

37777775

= det
1

1� jyj2

266664
�1 + jyj2 � y21 � y1y2

1�jyj2 � � � �y1yn�1
�y2y1 �1 + jyj2 � y22 �y2yn�1
...

. . .
...

�yn�1y1 �yn�1y1 � � � �1 + jyj2 � y2n�1

377775 = (�1)n�1

1� jyj2
;

by induction on n.
In particular then, from (3.11) and the above calculation, we have 	(X (y) ; y) = 0, � (X (y) ; y) and

@x	(X (y) ; y) = Idn and so

Phn�1;�I;� ;� (y; �) =

�
2�

�

�n�1
2

ei[�
(n�1)�

4 +�]
q
1� jyj2'�I (y) ;

which can be written in the variable � =
�
�y; �

q
1� jyj2

�
as

Phn�1;�I;� ;� (�) =

�
2�

j�j

�n�1
2 �n
j�je

i(j�j� (n�1)�
4 )hn�1;�I;�

�
�0

j�j

�
; �0 =

�
�1; :::; �n�1

�
:

We compute that for J 2 K (I) and ` (I)2 dist (0; J) � 2d,���DPhn�1;�I;� ;�; h
n;�
J;�

E��� = ����Z
Rn
Phn�1;�I;� ;� (�)h

n;�
J;� (�) d�

���� =
�����
Z
Rn

�
2�

j�j

�n�1
2 �n
j�je

i(j�j� (n�2)�
4 )hn�1;�I;�

�
�0

j�j

�
hn;�J;� (�) d�

�����
.

Z
Rn

�
1

dist (0; J)

�n�1
2
����hn�1;�I;�

�
�0

j�j

����� ���hn;�J;� (�)��� d� � � 1

dist (0; J)

�n�1
2
Z
Rn

1p
jIj
1I

�
�0

j�j

�
1p
jJ j
1J (�) d�

�
�

1

dist (0; J)

�n�1
2 1p

jIj jJ j
jJ j =

 
1

` (I)
2
dist (0; J)

!n�1
2 p

jIj jJ j . 2�dn�12
p
jIj jJ j:
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The intermediate terms P(`)
'�I ;�

(y; �) can be estimated in a similar way.

Next we estimate the inner product with the error term R
(M+1)

hn�1;�I;� ;�
using the bound (3.15),����R(M+1)

hn�1;�I;� ;�
(y; �)

���� � CM�
�n�1

2 �M�1
(Id�4x)

N
hn�1;�I;�


L1(Rn�1x )�L1(Rny�1)

� CM�
�n�1

2 �M�1 1

` (I)
2N

p
jIj;

for N > 1 + n�1
2 , to obtain �����R(M+1)

hn�1;�I;� ;�
; hn;�J;�

����� = ����Z
Rn
R
(M+1)

hn�1;�I;� ;�
(�)hn;�J;� (�) d�

����(4.17)

.
�

1

dist (0; J)

�n�1
2 +1

 
1

` (I)
2

!Np
jIj jJ j � 2�d(

n�1
2 +1)

 
1

` (I)
2

!�p
jIj jJ j;

where � = N � n+1
2 > 0.

Adding these estimates gives,���DTShn�1;�I;� ; hn;�J;�

E��� . ( MX
`=0

2�d(
n�1
2 +`) + 2�d(

n�1
2 +M+1)

 
1

` (I)
2

!�)p
jIj jJ j;

which completes the proof of (4.15). Since N � n+1
2 2 1

2Z, we may assume 0 < � � 1.

Remark 28. We will only use the case M = 0 of Theorem 25 in the proof of the probabilistic extension
conjecture in Theorem 2, which corresponds to the classical asymptotic formula with just the principal term
and remainder, but with a sharp estimate here on the remainder term when the amplitude is a smooth Alpert
wavelet.

4.2.4. Tangential integration by parts. Finally, we improve on the crude estimate (4.5) in the case k = 0,
d � 0 and m 2 N using a tangential integration by parts as our last principle of decay, where the supports
of I and ��1 (�tanJ) are separated by at least ` (I). Let (I; J) 2 P0;dm with d � 0, i.e.

dist (�tanJ; I) � 2m` (I) ; ` (J) = 1; and
2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 :

Recall again the change of variable in (3.8) and (3.9),D
TSh

n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

e�i�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
R

Z
Rn�1

Z
Rn�1

e�i��(x;y)'�I (x)
e �J (y; �) dxdyd�;

where

� (x; y) � � (x) � � (y) ;
'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) �  �J

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

Here the supports of �tanJ and I are separated by a distance of approximately 2m` (I), and ` (�tanJ) . ` (I),
and this suggests we should integrate by parts in the variables x and y.
So let yJ = ��1 (�tancJ) and v =

yJ�cI
jyJ�cI j 2 S

n�2 be the unit vector in the direction of yJ � cI , which is

close to the direction of y � x for x 2 I and y = ��1 (�tan�) with � 2 J . Consider the directional partial
derivative Dx

v = v � @@x , and note that

Dx
v� (x; y) = (Dv�) (x) � � (y) :

Since (Dv�) (x) is perpendicular to � (x) in Rn, we have the estimate

jDx
v� (x; y)j � jx� yj ; x 2 I; � 2 J:
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Now we compute

Dx
ve
�i��(x;y) = �i�e�i��(x;y)Dx

v� (x; y) = �i�e�i��(x;y) (Dv�) (x) � � (y) ;

and so �
1

�i� (Dv�) (x) � � (y)
Dx
v

�N
e�i��(x;y) = e�i��(x;y);

which gives, D
TSh

n�1;�
I;� ; hn;�J;�

E
(4.18)

=

Z
R

Z
Rn�1

Z
Rn�1

(�
1

�i� (Dv�) (x) � � (y)
Dx
v

�N
ei��(x;y)

)
'�I (x)

e �J (y; �) dxdyd�
= iN

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)

(�
Dx
v

1

(Dv�) (x) � � (y)

�N)
'�I (x)

e �J (y; �) dxdy d�
�N

:

This integral can be estimated by

���DTShn�1;�I;� ; hn;�J;�

E��� . Z
R

Z
Rn�1

Z
Rn�1

�����
�
Dx
v

1

(Dv�) (x) � � (y)

�N
'�I (x)

����� 1�N
���e �J (y; �)��� dxdyd�;

where we have the following pointwise estimates for N = 0 and N = 1,

j'�I (x)j .
1p
jIj
;

and

����Dx
v

1

(Dv�) (x) � � (y)
'�I (x)

���� 1� . j@x'�I (x)j
� j(Dv�) (x) � � (y)j

+
j'�I (x)j

���D2
v�
�
(x) � � (y)

��
� j(Dv�) (x) � � (y)j2

.
1

�`(I)
1p
jIj

� jx� yj +
1p
jIj

� jx� yj2
.

1
�

1p
jIj

�2m` (I) ` (I)
+

1p
jIj

� (2m` (I))
2

. 1

�2m` (I)
2

1p
jIj
= 2�m

1

dist (0; J) ` (I)
2

1p
jIj
:

We claim that by induction on N we have

(4.19)
1

�N

�����
�
Dx
v

1

(Dv�) (x) � � (y)

�N
'�I (x)

����� . 2�Nm
 

1

dist (0; J) ` (I)
2

!N
1p
jIj
:

For simplicity, we illustrate the inductive step in the case N = 2, and compute

Dx
v

1

(Dv�) (x) � � (y)
Dx
v

1

(Dv�) (x) � � (y)
'�I (x)

= Dx
v

 
Dx
v'

�
I (x)

[(Dv�) (x) � � (y)]2
�
'�I (x)

�
D2
v�
�
(x) � � (y)

[(Dv�) (x) � � (y)]3

!

=
(Dx

v)
2
'�I (x)

[(Dv�) (x) � � (y)]2
� 3

Dx
v'

�
I (x)

�
D2
v�
�
(x) � � (y)

[(Dv�) (x) � � (y)]3

�
'�I (x)

�
D3
v�
�
(x) � � (y)

[(Dv�) (x) � � (y)]3
+ 3

'�I (x)
��
D2
v�
�
(x) � � (y)

�2
[(Dv�) (x) � � (y)]4

;
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which gives,

1

�2

�����
�
Dx
v

1

(Dv�) (x) � � (y)

�2
'�I (x)

����� . 1

�2

0BB@
�

1
�`(I)

�2
1p
jIj

jx� yj2
+

�
1

�`(I)

�
1p
jIj

jx� yj3
+

1p
jIj
jx� yj

jx� yj3
+

1p
jIj

jx� yj4

1CCA
. 1

�2

 
1

22m` (I)
4 +

1

23m` (I)
4 +

1

24m` (I)
4

!
1p
jIj

. 1

�2
1

22m` (I)
4

1p
jIj
= 2�2m

 
1

dist (0; J) ` (I)
2

!2
1p
jIj
;

which is the case N = 2 of (4.19). The general case is similar.
The estimate (4.19) leads to the inner product estimate,���DTShn�1;�I;� ; hn;�J;�

E���(4.20)

�
Z
R

Z
Rn�1

Z
Rn�1

1

�N

�����
(�

Dx
v

1

(Dv�) (x) � � (y)

�N)
'�I (x)

����� ���b �J (y; �)��� dxdyd�
�

Z
R

Z
Rn�1

Z
Rn�1

2�Nm

 
1

dist (0; J) ` (I)
2

!N
1p
jIj

���b �J (y; �)��� dxdyd�
� 2�Nm

 
1

dist (0; J) ` (I)
2

!N
1p
jIj
jIj
b �J (y; �)

L1
� 2�N(m+d)

p
jIj jJ j;

since dist (0; J) ` (I)2 � 2d for (I; J) 2 P0;dm , d � 0.

5. Interpolation estimates

Here we describe the decay principle needed to handle sums of resonant inner products by probability. In
fact the probabilistic estimates here rely only on the transversality induced by the curvature of the sphere,
and not on stationary phase estimates. Throughout this subsection we will use the familiar notation b' for
the Fourier transform of ', and we will use the parameter s 2 N to pigeonhole the side length 2�s of a cube
I 2 G. Let

(5.1) Q�sf �
X

I2Gs[S]

4n�1;�
I;� f; where Gs [S] =

�
I 2 G : I � S and ` (I) = 2�s

	
;

be the smooth Alpert pseudoprojection onto Gs [S], i.e. the pseudoprojections 4�
I;� are restricted to dyadic

subcubes I of S at depth s in the grid G. Let ' 2 C1 (Rn) be a smooth nonnegative function satisfying

(5.2) ' (�) =

�
1 if � 2 BRn (0; 1)
0 if � =2 BRn (0; 2)

;

and set

't (�) = 2
�tn'

�
2�t�

�
; for t � 0;

where we note that the scaling is with respect to 2�t instead of the usual scaling t. Recall that � (x) =�
x;

q
jxj2
�
2 Sn�1 for x 2 S. De�ne the spherical measure f I� by

(5.3)

f I� (z) � 4
n�1;�
I;� f

�
��1 (z)

�
det @��1 (z) d�n�1 (z) =

D
(S�;�)

�1
f; hn�1I;�

E
hn�1;�I;�

�
��1 (z)

�
det @��1 (z) d�n�1 (z) ;

and with s understood, we set f� (z) �
P
I2Gs[S] f

I
� (z). Note that the spherical measure f

I
� has mass

roughly
���D(S�;�)�1 f; hn�1I;�

E��� 2�s(n�1) and is supported in Sn�1.
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Here is the model result of this subsection. Note that if f = Qsf equals its the Alpert projection, then
we have,

AS�;�a Q�sf = S�;�Aa (S�;�)�1Q�sf = S�;�Aa (S�;�)�1 S�;�Qsf = S�;�AaQsf = S�;�Aaf:

Proposition 29. Let n � 2, and let Q�s be as de�ned in (5.1). Then for p >
2n
n�1 , there is "p;n > 0 such

that for every s 2 N, and every f satisfying f = Qsf , we have,

(5.4)
�
E�
2G

TSAS�;�a f
p
Lp(B(0;2s))

� 1
p

. 2�s"p;n kfkLp(�n�1) ;

where the implied constant depends on n and p, but is independent of s 2 N.

This estimate is a building block toward controlling the resonant portion of the disjoint form, which
however requires a much larger localization to a ball of radius 22s.
We prove Proposition 29 in three steps, beginning with Plancherel�s theorem in the form of a lemma

that allows improvement of the traditional L2 and L4 curvature estimates in the presence of probability
and Alpert wavelets. Then we use the scaled Marcinkiewicz interpolation theorem to obtain the desired
conclusion if certain L2 and L4 estimates hold. Finally we establish these L2 and L4 estimates to complete
the proof of Proposition 29.
For s � r � 2s, de�ne a fattened n-dimensional measure f�;r by

(5.5) f�;r � f� � 'r =
X

I2Gs[S]

f I� � 'r =
X

I2Gs[S]

f I�;r; where f I�;r � f I� � 'r :

We will use the upper majorant properties of L2 and L4 (we use this latter phrase loosely to denote that
convolution is a positive operation) to obtain Lemma 30 below in order to signi�cantly reduce the norm
kTSQ�sfk

p

Lp(jc'sj4�n) when averaged over involutive Alpert multipliers of f .
Note: The n-dimensional measure f I�;r = f I� � 'r is supported in the fattened spherical cap

I2�r �
�
z 2 Rn : dist

�
z;Supp f I�

�
. 2�r

	
;

which for r = 2s is roughly a rectangular block of side lengths 2�2s � 2�s oriented perpendicular to
a normal of the spherical cap Supp f I�. We have the estimate,

(5.6)
��f I�;r (z)�� . ���DS�1�;�f; hn�1I;�

E��� 2r2sn�12 1I2�r (z) :
Lemma 30. Suppose s 2 N, and ' is as in (5.2) above, so that jc'sj � 1 on B (0; C2s). Then for s � r � 2s,
we have Z

Rn

���cf� (�)���2 jd'2s (�)j2 jc'r (�)j2 d� =

Z
Rn

���[f�;2s (�)���2 jc'r (�)j2 d�;Z
Rn

���cf� (�)���4 jc'r (�)j4 d� =

Z
Rn

���df�;r (�)���4 d�;
Proof. From Plancherel�s formula, we haveZ

Rn

���cf� (�)���2 jd'2s (�)j2 jc'r (�)j4 d� = Z
Rn

��� \f� � '2s (�)���2 jc'r (�)j2 d� = Z
Rn

���[f�;2s (�)���2 jc'r (�)j2 d�;
and using Plancherel�s formula again with the convolution identity [f � g = bfbg, givesZ

Rn

���cf� (�)���4 jc'r (�)j4 d� = Z
Rn

��� \f� � f� � 'r � 'r (�)
���2 d�

=

Z
Rn

\f� � f� � 'r � 'r (�) (�) \f� � f� � 'r � 'r (�) d�

=

Z
S

f�;r � f�;r (x) f�;r � f�;r (x) dx =
Z
Rn

���df�;r (�)���4 d�:
�

Here is the lemma that obtains the required Lp bounds from improved L2 and L4 bounds.
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Lemma 31. Let n � 2 and s 2 N. Assume that[f�;2s
L2(jc'sj2�n) . 2

s
2 kfkL2(S) ;(5.7)  

E�
2G

 \AS�;�a f�;2s

4
L4(�n)

! 1
4

. 2�s
n�2
4 kfkL4(S) :

Then for p > 2n
n�1 , there is "p;n > 0 such that 

E�
2G

 \AS�;�a f�;2s

p
Lp(jc'sj2jd'2sj4�n)

! 1
p

. 2�s"p;n kfkLp(S) ;

holds for every s 2 N with implied constant independent of 	 and s.

Note in particular that Lemma 31 implies (5.4) in Proposition 29 .

Proof. Combining Lemma 30 with the assumptions (5.7) gives the pair of inequalities,

kTSQ�sfkL2(jc'sj2jd'2sj4�n) . 2
s
2 kfkL2(�n�1) ;�

E�
2G

TS �AS�;�a Q�sf
�4

L4(jc'sj2jd'2sj4�n)
� 1

4

. 2�s
n�2
4 kfkL4(�n�1) :

Indeed,

kTSQ�sfk
2
L2(jc'sj2jd'2sj4�n) � kTSQ�sfk2L2(jc'sj2jd'2sj2�n) =

Z
Rn
jTSQ�sf (�)j

2 jc's (�)j2 jd'2s (�)j2 d�
=

Z
Rn

��� \(Q�sf)� (�)���2 jd'2s (�)j2 jc's (�)j2 d� = Z
Rn

��� \(Q�sf)�;2s (�)
���2 jc's (�)j2 d�

=
 \(Q�sf)�;2s

2
L2(jc'sj2�n) . 2s kQ�sfk

2
L2(S) . 2s kfk

2
L2(S) ;

and

E�
2G
kTSAma Q�sfk

4
L4(jc'sj2jd'2sj4�n) � E�2G

Z
Rn
jTSAsaQ�sf (�)j

4 jd'2s (�)j4 d�
= E�

2G

Z
Rn

��� \Asa (Q
�
sf)� (�)

���4 jd'2s (�)j4 d� = E�2G Z
Rn

������ \X
I2Gs[S]

aI (Q
�
sf)

I
� (�)

������
4

jd'2s (�)j4 d�
= E�

2G

Z
Rn

�������
\0@ X

I2Gs[S]

aI (Q
�
sf)

I

1A
�

(�)

�������
4

jd'2s (�)j4 d� = E�2G Z
Rn

�������
\0@ X

I2Gs[S]

aI (Q
�
sf)

I

1A
�;2s

(�)

�������
4

d�

= E�
2G

Z
Rn

������ \X
I2Gs[S]

aI (Q
�
sf)

I
�;2s (�)

������
4

d� = E�m
2Gs[S]

Z
Rn

��� \Asa (Q
�
sf)�;2s (�)

���4 d�
= E�s

2Gs[S]

 \Asa (Q
�
sf)�;2s

4
L4(�n)

. 2�s(n�2) kQ�sfk
4
L4(S) . 2�s(n�2) kfk

4
L4(S) :

These L2 and L4 estimates can be recast in terms of square functions by Khintchine�s inequality, and we
will now show that the scaled Marcinkiewicz interpolation theorem applies to obtain (5.4).
Indeed, by Khinchine�s inequality, the above bounds are equivalent to

kST;sfkL2(�n) . 2
s
2 kfkL2(�n�1) ;

kST;sfkL4(1B(0;2s)�n) . 2�s
n�2
4 kfkL4(�n�1) ;
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where ST;s is the square function de�ned by

ST;sf �

0@ X
I2Gs[S]

���TS 4n�1;�
I;� f

���2
1A 1

2

:

The sublinear operator ST;s is actually linearizable since it is the supremum of the linear operators Luf �
TS
P
I2Gs[S] uI 4

n�1;�
I;� f taken over all vectors u = (uI)I2Gs[S] with juj`2 = 1. Then by the scaled

Marcinkiewicz theorem applied to ST;s, see e.g. [Tao2, Remark 29], we have

kST;sfkLp � Cn;p2
s
2 (1��)2�s

n�2
4 � = Cn;p2

s
2 (1�(2�

4
p ))2�s

n�2
4 (2�

4
p ) = Cn;p2

�s"n;p ;

where

"n;p =
n� 2
4

�
2� 4

p

�
� 1
2

�
1�

�
2� 4

p

��
=
n� 1
2p

�
p� 2n

n� 1

�
> 0;

for p > 2n
n�1 . Another application of Khintchine�s inquality converts this bound back to the expectation

bound, �
E�s
2Gs[S]

kTs;afkpLp(1B(0;2s)�n)

� 1
p

. Cn;p2
�s"n;p kfkLp(�n�1) :

Thus we have

E�s
2Gs[S]

TSAS�;�a f (�)
p
Lp(Bs)

. 2�s"n;p kfkpLp(S) ;

which completes the proof of Lemma 31. �

It remains to establish the improved bounds in (5.7), which we accomplish in the next three subsubsections.
Once this is done, the proof of Proposition 29 is complete.

5.1. The L2 estimate. We �rst compute the norm of �2s from L2 (S) to L2
�
jc'sj2 �n�, where �2sf � [f�;2s.

We have

k�2sfk2L2(jc'sj2�n) =
Z
Rn

���[f�;2s (�)���2 jc's (�)j2 d� = Z
Rn

\f�;2s � 's (�) \f�;2s � 's (�) d�

=
X

I;K2Gs[S]

Z
Rn

\f I�;2s � 's (�) \fK�;2s � 's (�) d� =
X

I;K2Gs[S]

Z
S

f I�;2s � 's (x)
�
fK�;2s � 's

�
(x) dx:

Noting that the supports of f I�;2s � 's and fK�;2s � 's are essentially disjoint unless I � K, and recalling the
de�nition of I2�s in Note 5, we can use (5.6),��f I�;r (z)�� . ���DS�1�;�f; hn�1I;�

E��� 2r2sn�12 1I2�r (z) ;
to estimate the above expression by

k�2sfk2L2(jc'sj2�n) .
X
I�B0

Z
Rn

��f I�;2s � 's (�)��2 d�(5.8)

.
X

I2Gs[S]

Z
Rn

������DS�1�;�f; hn�1I;�

E��� 22s2sn�12 1I2�2s � 's (�)���2 d�
.

X
I2Gs[S]

���DS�1�;�f; hn�1I;�

E���2 Z
Rn

���2s2sn�12 1I2�s (�)���2 d�;
where we have used the fact that the positive measures

��1I2�2s � 's�� and 2�s1I2�s , are supported in roughly
a common cube of side length 2�s, and have roughly the same mass, i.e.
(5.9)Z

Rn
1I2�2s � 's (�) d� =

�Z
Rn
1I2�2s (�) d�

��Z
Rn
's (�) d�

�
=

Z
Rn
1I2�2s (�) d� � 2

�s
Z
Rn
1I2�s (�) d�:
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Then we continue with

k�2sfk2L2(jc'sj4�n) .
X

I2Gs[S]

���DS�1�;�f; hn�1I;�

E���2 �2s2sn�12 �2 jI2�s j
= 2s

X
I2Gs[S]

���DS�1�;�f; hn�1I;�

E���2 . 2s S�1�;�f2L2(S) � 2s kfk2L2(S) :
This proves the �rst line in (5.7).

5.2. The L4 estimate. Now we turn to computing the norm of �2s from L4 (S) to L4 (Rn). We have

kQ�sfk
4
L4(�n�1)

=

Z
Rn�1

0@ X
I2Gs[S]

D
(S�;�)

�1
f; hn�1I;�

E
hn�1;�I;� (x)

1A4

dx

�
Z
Rn�1

X
I2Gs[S]

�D
(S�;�)

�1
f; hn�1I;�

E
hn�1;�I;� (x)

�4
dx

=
X

I2Gs[S]

���D(S�;�)�1 f; hn�1I;�

E���4 Z
Rn�1

���hn�1;�I;� (x)
���4 dx

�
X

I2Gs[S]

���D(S�;�)�1 f; hn�1I;�

E���4 1p
jIj

!4
jIj =

X
I2Gs[S]

���D(S�;�)�1 f; hn�1I;�

E���4 1jIj
= 2s(n�1)

X
I2Gs[S]

���D(S�;�)�1 f; hn�1I;�

E���4 = 2s(n�1) ��� �f ���4
`4(Gs[S])

;

where �f �
nD
(S�;�)

�1
f; hn�1I;�

Eo
I2Gs[S]

is the sequence of Alpert coe¢ cients of (S�;�)
�1
f restricted to Gs [S].

Recall that
(S�;�)�1 f

Lp(S)
� kfkLp(S) by Theorem 11.

Next we calculate the L4 (�n) norm of �2sf :

k�2sfk4L4(�n) =
Z
Rn

���[f�;2s (�)���4 d� = Z
Rn

������
X

I2Gs[S]

[f I�;2s (�)

������
4

d�

=

Z
Rn

������
X

I;J2Gs[S]

[f I�;2s (�)[fJ�;2s (�)

������
2

d� =

Z
Rn

������
X

I;J2Gs[S]

\f I�;2s � fJ�;2s (�)

������
2

d�;

by the Fourier convolution formula, and then by Plancherel�s theorem,

k�2sfk4L4(�n) =
Z
Rn

������
X

I;J2Gs[S]

f I�;2s � fJ�;2s (z)

������
2

dz =
X

I;J;I0;J 02Gs[S]

Z
f I�;2s � fJ�;2s (z) f I

0

�;2s � fJ
0

�;2s (z) dz:

Now we compute the average E�
2G

�2sAS�;�a f
4
L4(�n)

over all involutive smooth Alpert multipliers AS�;�a ,

where remembering that the functions f I�;2s have the �-smoothness built into their de�nition,

E�
2G

�2sAS�;�a f
4
L4(�n)

= E�
2G

X
I;J;I0;J 02Gs[S]

X
(aI ;aJ ;aI0 ;aJ0 )2f�1;1gGs[S]

E�
2G

Z �
aIf

I
�;2s

�
�
�
aJf

J
�;2s

�
(z)

�
aI0f

I0

�;2s

�
�
�
aJ0f

J0

�;2s

�
(z) dz

= 2

8>><>>:
X

I;J;I0;J 02Gs[S]
I=J and I0=J0

+
X

I;J;I0;J 02Gs[S]
I=I0 and J=J0

9>>=>>;
Z
f I�;2s � fJ�;2s (z) f I

0

�;2s � fJ
0

�;2s (z) dz � E1 + E2;
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since the only summands that survive expectation are those for which aIaJaI0aJ0 is a product of squares,
i.e. the factors occur in pairs of equal sign �1.

Remark 32. This is the key consequence of taking expectation, and is the only place in the paper where
it arises. Note also that in n = 2 dimensions, Fe¤erman made the critical observation that the supports
of the convolutions f I�;2s � fJ�;2s are essentially pairwise disjoint, so that the L2 norm squared of the sum
is the sum of the L2 norms squared. This then led to the resolution of the extension problem in dimension
n = 2. However, in higher dimensions this observation doesn�t generalize in a simple way, since there is
an (n� 2)-dimension sphere contained inside Sn�1 whose pairs of �antipodal cubes�support functions whose
convolutions all occupy the same space. The pairs of distinct antipodal cubes vanish under expectation, which
leads to a favourable L4 estimate.

We have

E2 = 2
X

I;J2Gs[S]

Z
f I�;2s � fJ�;2s (z) f I�;2s � fJ�;2s (z) dz = 2

X
I;J2Gs[S]

Z ��f I�;2s � fJ�;2s (z)��2 dz:
Since the supports of f I�;2s � f I�;2s and f I

0

�;2s � f I
0

�;2s are disjoint unless dist (I; I
0) . 1, we also have

E1 = 2
X

I;I02Gs[S]

Z
f I�;2s � f I�;2s (z) f I

0

�;2s � f I
0

�;2s (z) dz .
X

I2Gs[S]

Z ��f I�;2s � f I�;2s (z)��2 dz:
Altogether we obtain

E�
2G
k�2sfk4L4(�n) .

X
I;J2Gs[S]

Z ��f I�;2s � fJ�;2s (z)��2 dz
=

X
I;J2Gs[S]: dist(I;J).2�s

Z ��f I�;2s � fJ�;2s (z)��2 dz + sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

Z ��f I�;2s � fJ�;2s (z)��2 dz
� 	+

sX
t=0

	t:

Now note that the L1 norm of f I�;2s � fJ�;2s is essentiallyf I�;2sL1 fJ�;2sL1 �
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� khIkL1 khJkL1

=
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1);

and since the volume of R2s (I; J) = I2�2s + J2�2s is essentially 2�sn dist (I; J), we have

jRs+t (I; J)j � jR2s (I; J)j � 2�sn dist (I; J) = 2�sn�t; for dist (I; J) � 2�t;

where the �rst equivalence is a simple consequence of the geometry of the situation. Thus we conclude that
for dist (I; J) � 2�t,f I�;2s � fJ�;2sL1 .

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1)
�

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1) 1

2�sn dist (I; J)
1R2s(I;J)


L1
:

Since there is � > 0 and a rectangle RI such that
��f I�;2s�� � �1RI

and
f I�;2sL1 � k�1RI

kL1 , which again is
a simple consequence of geometry, we then deduce the comparability of the integrands for dist (I; J) � 2�t,

f I�;2s � fJ�;2s (z) �
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1) 1

2�sn dist (I; J)
1R2s(I;J) (z)

= jhf; hIi hf; hJij
2s

dist (I; J)
1R2s(I;J) (z) = 2

s+t
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���1R2s(I;J) (z) :
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Thus we have
sX
t=0

	t .
sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

Z
Rn

��f I�;2s � fJ�;2s (z)��2 dz
.

sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

Z
Rn

���2s+t ���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���1R2s(I;J) (z)
���2 dz

.
sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

22s+2t
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2 jR2s (I; J)j

.
sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

2�s(n�2)2t
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2 � sX

t=0


t;

where we have de�ned 
t to be the bound for 	t obtained above.
Now recall that

kQ�sfk
4
L4(�n�1)

� 2s(n�1)
X

I2Gs[S]

D
(S�;�)

�1
f; hn�1;�I;�

E4
:

Thus for 0 < t < s we have


t .
X

I;J2Gs[S]: dist(I;J)�2�t
2�s(n�2)2t

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2
. 2�s(n�2)2t

X
I;J2Gs[S]: dist(I;J)�2�t

���D(S�;�)�1 f; hI;�E���4
. 2�s(n�2)2t2(s�t)(n�1)

X
I2Gs[S]

���D(S�;�)�1 f; hI;�E���4 = 2�t(n�2)2�s(n�2) kQ�sfk4L4(S) ;
since

#
�
J 2 Gs [S] : dist (I; J) � 2�t

	
� volume of annulus

volume of cube
� 2�t(n�1)

2�s(n�1)
;

which then gives
sX
t=0

	t .
sX
t=0


t .
sX
t=0

2�t(n�2)2�s(n�2) kQ�sfk
4
L4(S) � 2

�s(n�2) kQ�sfk
4
L4(S) :

Similarly we obtain
	 . 2�s(n�2) kQ�sfk

4
L4(S) ;

and adding these results gives

E�
2G

�2sAS�;�a f
4
L4(�n)

. 2�s(n�2) kQ�sfk
4
L4(S) ;

which is the second line in (5.7).

6. Control of the below form Bbelow (f; g)

Combining the above principles of decay, and staying the introduction of absolute values until the very

end, we will be able to obtain estimates on the inner products
D
TSh

n�1;�
I;� ; hn;�J;�

E
, which will lead to the

following form bounds for some �xed � > 0 depending only on n and p,���Bk;dbelow (f; g)��� . 2��(d+jkj) kfkLp kgkLp0 ; for p >
2n

n� 1 :

We will begin with the two easier cases involving d � 0, since each of these cases requires just one of the
decay principles described above.
Later we turn to the subforms involving d � 0, which are harder to control as each of them requires

combining two of the decay principles described above.
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Remark 33. The next result shows in particular that the basic form B0;0below (f; g) is bounded using only the
crude estimate (4.5), and the strict restriction to p > 2n

n�1 . See also the Direct Argument in Subsubsection
9.2.1 for a much shorter proof of essentially the same result.

6.1. Subforms with k � 0; d � 0. Here is the conclusion of this �rst subsection.

Lemma 34. Fix s 2 N. Then

(6.1)
X
k�0

X
d�0

���Bk;dbelow (f; g)��� �X
k�0

X
d�0

X
(I;J)2Pk;d

0

���DTS 4n�1;�
I;� f;4n;�

J;�g
E��� . kfkLp kgkLp0 ; for p � 2n

n� 1 :

To prove Lemma 34, we just need the estimate (4.6) that used radial integration by parts, namely,���DTShn�1;�I;� ; hn;�J;�

E��� � CN2
�kN

hn�1;�I;�


L1

hn;�J;�
L1
� 2�kN

p
jIj jJ j; k � 0:

Let I� � (1 + �) I so that Supp4n�1;�
I;� f � I�. Note also that jI�j � jIj. Then we have from (4.6),���Bk;dbelow (f; g)��� � X

(I;J)2Pk;d
0

���DTS 4n�1;�
I;� f;4n;�

J;�g
E��� � X

(I;J)2Pk;d
0

2�kN

 Z
I�

���4n�1;�
I;� f (x)

��� dx! Z
J�

���4n;�
J;�g (�)

��� d�!

= 2�kN
Z
Rn

X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!1J� (�) ���4n;�
J;�g (�)

��� d�
� 2�kN

Z
Rn

vuuut X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx1J� (�)
!2vuut X

(I;J)2Pk;d
0

���4n;�
J;�g (�)

���2d�

. 2�kN

0B@Z
Rn

0@ X
(I;J)2Pk;d

0

�Z
I

���4n�1;�
I;� f (x)

��� dx1J� (�)�2
1A

p
2

d�

1CA
1
p

0BB@Z
Rn

0@ X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2
1A

p0
2

d�

1CCA
1
p0

� 2�kN�1�2 ;

where

�p
0

2 =

Z
Rn

0@ X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2
1A

p0
2

d� =

Z
Rn

0@X
J2D

0@ X
I2G: (I;J)2Pk;d

0

1

1A���4n;�
J;�g (�)

���2
1A

p0
2

d�:

We now choose a dyadic cube IJ 2 G that approximates the spherical projection �tan (J) of J . So �x
J 2 D and let IJ 2 G satisfy

cn` (�tan (J)) � ` (IJ) � ` (�tan (J)) and IJ � �tan (J) ;

where �tan (J) is the spherical projection J onto Sn�1, and where cn > 0 is chosen small enough that such
a cube IJ exists.
Now (I; J) 2 Pk;d0 if and only if

�tanJ � � (CpseudoI) and
2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 ;

which is essentially equivalent to

I � �tanJ � IJ and

s
2d�1

2 dist (0; J)
� ` (I) �

s
2d+1

dist (0; J)
:

Thus for �xed J 2 Dk where
Dk �

�
J 2 D : ` (J) = 2k

	
;
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the set of cubes I 2 G with (I; J) 2 Pk;d0 is contained in the �nite tower of dyadic cubes
�
�(k)IJ

	d+A
k=d�A for

some �xed A 2 N. It follows that
P
I2G: (I;J)2Pk;d

0
1 � 2A and so

(6.2) �p
0

2 =

Z
Rn

0@ X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2
1A

p0
2

d� �
Z
Rn

 X
J2Dk

2A
���4n;�

J;�g (�)
���2!

p0
2

d� . kgkp
0

Lp0
;

by the square function estimate (1.8).
We turn now to estimating �1. Since the cubes J� in Dk have bounded overlap with measure roughly 2kn,

�p1 =

Z
Rn

0@ X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx1J� (�)
!21A

p
2

d�(6.3)

=

Z
Rn

0@X
J2Dk

8<: X
I2G: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
9=;1J� (�)

1A
p
2

d�

�
Z
Rn

X
J2Dk

8<: X
I2G: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
9=;

p
2

1J� (�) d�

� 2kn
X
J2Dk

0@ X
I2G: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

:

Now for each �xed J 2 Dk and I 2 G [S] with (I; J) 2 Pk;d0 , we have

` (J) = 2k; ` (I)
2
dist (0; J) � 2d; �tanJ � � (CpseudoI) ;

` (IJ) � ` (�tanJ) �
` (J)

dist (0; J)
=

2k

dist (0; J)
;

which implies

` (I) �

s
2d

dist (0; J)
�
r
2d` (�tanJ)

2k
= 2

d�k
2

p
` (IJ);

log2
` (I)

` (IJ)
� log2

2
d�k
2p

` (IJ)
� 1

2

�
d� k � log2

1

` (IJ)

�
:

Thus with d� � 1
2

�
d� k � log2 1

`(IJ )

�
and A as in (6.2) above, we have for each J 2 D,

0@ X
I2G[S]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

�

0@ d�+AX
s=d��A

 Z
�(m)(IJ )�

���4n�1;�
�(s)(IJ );�

f (x)
��� dx!2

1A
p
2

� (2A)
p
2�1

X
I2G[S]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p � X
I2G[S]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p :
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Altogether then,

�p1 . 2kn
X
J2Dk

X
I2G[S]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p(6.4)

� 2kn
X
J2Dk

X
I2G[S]: (I;J)2Pk;d

0

jIj
p
2

 Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

� 2kn
X
I2G[S]

0@ X
J2Dk: (I;J)2Pk;d

0

1

1A jIjp 1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

:

Now recall that P0 � f(I; J) 2 G � D : �tan (J) � � (CpseudoI)g, and de�ne

K (I) �
[
fJ 2 D : �tan (J) � � (CpseudoI)g :

Now for �xed I 2 G [S],

#
n
J 2 Dk : (I; J) 2 Pk;d0

o
(6.5)

� 2�kn jKd (I)j � 2�kn
 

2d

` (I)
2 ` (I)

!n�1
2d

` (I)
2

= 2�kn
2dn

` (I)
n+1 = 2

�kn2dn
�
1

jIj

� n+1
n�1

;

where Kd (I) �
[(

J � K (I) : 2
d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2

)
;

and so we have

�p1 . 2kn
X
I2G[S]

�
#
n
J 2 Dk : (I; J) 2 Pk;d0

o�
jIjp

 
1

jI�j

Z
I�

���4n�1;�
I;� f

���2!
p
2

. 2kn2�kn2dn
X
I2G[S]

jIjp�
n+1
n�1

 
1

jI�j

Z
I�

���4n�1;�
I;� f

���2!
p
2

= 2dn
Z
S

X
I2G[S]

jIjp�
n+1
n�1�1

 
1

jI�j

Z
I�

���4n�1;�
I;� f

���2!
p
2

1I (x) dx

� 2dn
Z
S

X
I2G[S]

 
1

jI�j

Z
I�

���4n�1;�
I;� f

���2 1I (x)!
p
2

dx ;

if p � 2n
n�1 . Now using Hölder�s inequality with p

2 > 1, and the Fe¤erman Stein vector valued maximal
inequality,we can continue with

�p1 . 2dn
Z
S

 X
I2G

1

jI�j

Z
I�

���4n�1;�
I;� f

���2 1I (x)!
p
2

dx . 2dn
Z
S

 X
I2G

�
M
���4n�1;�

I;� f
���2� (x)!

p
2

dx(6.6)

. 2dn
Z
S

 X
I2G

���4n�1;�
I;� f

���2 (x)!
p
2

dx . 2dn kfkpLp ;

by the square function estimate (1.8). Thus we have proved,���Bk;dbelow (f; g)��� . 2�kN2 dnp kfkLp kgkLp0 ; for k � 0 and d � 0;
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which gives X
k�0

X
d�0

���Bk;dbelow (f; g)��� . kfkLp kgkLp0 ; for p � 2n

n� 1 :

6.2. Subforms with k � 0; d � 0. This case also requires just one principle of decay, but this time we use
the moment vanishing decay principle instead of the radial integration by parts decay principle. From (4.13)
we have D

TSh
n�1;�
I;� ; hn;�J;�

E
=

Z
S

e�i�(x)�cJhn�1;�I;� (x)

�Z
Rn
R� (�i� (x) � (� � cJ))hn;�J;� (�) d�

�
dx;

and then from (4.14), we obtain the estimate,���DTShn�1;�I;� ; hn;�J;�

E��� �
Z
S

���hn�1;�I;� (x)
��� Z

Rn

j� (x) � (� � cJ)j�

(�+ 1)!

���hn;�J;� (�)��� d�dx
. ` (J)

� k'�IkL1 k 
�
JkL1 � 2

�jkj�pjIj jJ j:
The proof is now virtually the same as that in the previous subsection, but using the above estimate instead,
and results in the bound,���Bk;dbelow (f; g)��� . 2�jkj�2 dnp kfkLp kgkLp0 ; for k � 0 and d � 0;

which gives X
k�0

X
d�0

���Bk;dbelow (f; g)��� . kfkLp kgkLp0 ; for p � 2n

n� 1 :

6.3. Subforms with k � 0; d � 0. Here we will use the vanishing moments of hn;�J;� together with stationary
phase. In the case k � 0 and d � 0, we have from (4.13), which used the vanishing moments of hn;�J;�,D

TSh
n�1;�
I;� ; hn;�J;�

E
=

Z
S

e�i�(x)�cJhn�1;�I;� (x)

�Z
Rn
R� (�i� (x) � (� � cJ))hn;�J;� (�) d�

�
dx;

and using the change of variable � ! (y; �) in (3.9) with cJ = �� (yJ), this can be written,D
TSh

n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

�Z
S

e�i��(x;yJ )hn�1;�I;� (x)R� (�i�� (x) � (� (y)� � (yJ))) dx
�
hn;�J;� (�� (y))

dyq
1� jyj2

�n�1d�

=

Z
Rn
I_

'�I ;�
(yJ ; �)h

n;�
J;� (�� (y))

dyq
1� jyj2

�n�1d�;

where

I_

'�I ;�
(yJ ; �) =

Z
S

e�i��(x;yJ )
_

'�I (x; y; yJ) dx;

and
_

'�I (x; yJ ; y) � hn�1;�I;� (x)R� (�i�� (x) � (� (y)� � (yJ))) = hn�1;�I;� (x)R� (�i� (x) � (� � cJ)) ;

jR� (ib)j =

����Z 1

0

eitb (ib)
� (1� t)�

�!
dt

���� . jbj�

�!
;���R(`)� (b)

��� =

����Z 1

0

@`b
�
eitb (ib)

�� (1� t)�
�!

dt

���� . jbj��` ;
and yJ is the unique point in S such that cJ = �� (yJ).
This time Theorem 25 with M = 0 gives the asymptotic expansion,

I_

'�I ;�
(yJ ; �) = P_

'�I ;�
(yJ ; �) +R

(1)
_

'�I ;�
(yJ ; �) ;
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where

P_

'�I ;�
(yJ ; �) =

�
2�

�

�n
2 ei sgn[@

2
x�(X(yJ );yJ )]�4+��(X(yJ );yJ )p
j@2x� (X (yJ) ; yJ)j

_

'�I (X (yJ) ; yJ ; y) ;

and

R
(1)
_

'�I ;�
(yJ ; �) =

�
2�

�

�n
2 ei[sgnB(yJ )

�
4+��(X(yJ );yJ )]p

detB (yJ)

�
Z
F�1z

0B@
24
D
i@z; B (yJ)

�1
@z

E
2�

351 f
1CA (�)R1 �i �trB (yJ)�1 �

2�

!
d�;

where

R1 (ib) =

Z 1

0

eitb (ib)
1 (1� t)1

(M + 1)!
dt; for b 2 R;

and

f (z; yJ ; y) �
_

'�I
�
	�1y (z) ; yJ ; y

�
det
�
(@x	)

�
	�1y (z)

�� :
We can rewrite the principal term as

P_

'�I ;�
(yJ ; �) =

�
2�

�

�n�1
2 ei sgn[@

2
x�(X(yJ );yJ )]�4+��(X(yJ );yJ )p

jdetB (yJ)j

_

'�I (X (y) ; yJ ; y)

=

�
2�

�

�n�1
2

ei
(n�1)�

4 +�

q
1� jyJ j2

_

'�I (yJ ; yJ ; y)

= e�
(n�1)�

4 eij�j
�
2�

j�j

�n�1
2 �n
j�j

_

'�I

�
c0J
jcJ j

;
c0J
jcJ j

;
�0

j�j

�
;

and the remainder term as

R
(1)
_

'�I ;�
(yJ ; �) =

�
2�

�

�n�1
2 ei[sgnB(yJ )

�
4+��(X(yJ );yJ )]p

jdetB (y)j

�
Z
F�1z

0B@
24
D
i@z; B (yJ)

�1
@z

E
2�

351 f
1CA (�)R1 �i �trB (yJ)�1 �

2�

!
d�:

Now we compute that for x 2 I and y 2 �tanJ ,

j� (x) � (� (y)� � (yJ))j . j� (y)� � (yJ)j cos (] [� (x) ;� (y)� � (yJ)]) .
` (J) ` (I)

dist (0; J)
;(6.7)

and
��@Nx � (x) � (� (y)� � (yJ))�� . j� (y)� � (yJ)j .

` (J)

dist (0; J)
; for N � 1;

where we have used that

j� (y)� � (yJ)j . ` (�tanJ) .
` (J)

dist (0; J)
;

cos (] [� (x) ;� (y)� � (yJ)]) � cos (] [� (x) ;�0 (yJ)]) = sin (] [� (x) ;� (yJ)]) . ` (I) :
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The modulus of the inner product
D
Pf'�I ;�; hn;�J;�

E
is thus bounded by,�����P_

'�I ;�
; hn;�J;�

����� � Z
Rn

����P_

'�I ;�
(�)hn;�J;� (�)

���� d� � P_

'�I ;�


L1

hn;�J;�
L1
jJ j

.
�

1

dist 0; J

�n�1
2
_'�I

L1

p
jJ j .

�
1

dist 0; J

�n�1
2 1p

jIj
sup

y2�tanJ
jR� (�i�� (x) � (� (y)� � (yJ)))j

p
jJ j

.
�

1

dist (0; J)

�n�1
2 1p

jIj

�
` (J) ` (I)

dist (0; J)

��p
jJ j =

 
1

` (I)
2
dist (0; J)

!n�1
2 �

` (J) ` (I)

dist (0; J)

��p
jIj jJ j

=

 
1

` (I)
2
dist (0; J)

!n�1
2 �

` (I)

dist (0; J)

��
` (J)

�
p
jIj jJ j � 2�d

n�1
2 2�jkj�

�
` (I)

dist (0; J)

��p
jIj jJ j

. 2�d
n�1
2 2�jkj�

p
jIj jJ j;

since `(I)
dist(0;J) . 1.

Now we use (3.15) with M = 0 to obtain that for N > 1 + n
2 , we have,����R(1)_

'�I ;�
(�)

���� . C1�
�n�1

2 �1
(Id�4x)

N f'�I
L1(Rnx )�L1(Rny )

;

where
_

'�I (x; yJ ; y) � hn�1;�I;� (x)R� (�i�� (x) � (� (y)� � (yJ))) :

With R = R� and S = �� (x) � (� (y)� � (yJ)) we have

(R � S)0 = (R0 � S)S0;
(R � S)00 = ((R0 � S)S0)0 = (R00 � S) (S0)2 + (R0 � S)S00

(R � �)000 =
�
(R00 � �) (S0)2

�0
+ ((R0 � S)S00)0

= (R000 � �) (S0)3 + 3 (R00 � S)S0S00 + (R0 � S)S000;
etc:

Convention: We use the arrow �! to denote the assertion that a term on the left side of the arrow
gives rise to the factor on the right of the arrow in the estimate.

With this convention we have that

R(`) � S �!
�
` (J) ` (I)

dist (0; J)

���`
;

and S(`2) �! ` (J) ;

so we conclude,

(R � S)0 �!
�
` (J) ` (I)

dist (0; J)

���1
` (J) ;

and

(R � S)00 �!
�
` (J) ` (I)

dist (0; J)

���2
` (J)

2
+

�
` (J) ` (I)

dist (0; J)

���1
` (J)

=

�
` (J) ` (I)

dist (0; J)

���2
` (J)

�
` (J) +

` (J) ` (I)

dist (0; J)

�
=

�
` (J) ` (I)

dist (0; J)

���2
` (J)

2

�
1 +

` (I)

dist (0; J)

�
�
�
` (J) ` (I)

dist (0; J)

���2
` (J)

2
;



PROBABILISTIC FOURIER EXTENSION 59

and

(R � S)000 �!
�
` (J) ` (I)

dist (0; J)

���3
` (J)

3
+

�
` (J) ` (I)

dist (0; J)

���2
` (J)

2
+

�
` (J) ` (I)

dist (0; J)

���1
` (J)

=

�
` (J) ` (I)

dist (0; J)

���3
` (J)

(
` (J)

2
+

�
` (J) ` (I)

dist (0; J)

�
` (J) +

�
` (J) ` (I)

dist (0; J)

�2)

=

�
` (J) ` (I)

dist (0; J)

���3
` (J)

3

(
1 +

�
` (I)

dist (0; J)

�
+

�
` (I)

dist (0; J)

�2)
�
�
` (J) ` (I)

dist (0; J)

���3
` (J)

3
:

In general, by an induction on `, we have

(R � S)(`) �!
�
` (J) ` (I)

dist (0; J)

���`
` (J)

`
=

�
` (I)

dist (0; J)

���`
` (J)

�
; 0 � ` � �:

Thus with ' = f'�I = h (R � S), where h = hn�1;�I;� and R = R� and S = �� (x) � (� (y)� � (yJ)) are as
above, we have

h(j) �! 1p
jIj

�
1

` (I)

�j
;

and (R � S)(`) �!
�

` (I)

dist (0; J)

���`
` (J)

�
:

Altogether then,

' = h (R � S) �! ` (J)
�p

jIj

�
` (I)

dist (0; J)

��

'0 = h0 (R � S) + h (R � S)0 �! 1p
jIj

�
1

` (I)

��
` (I)
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��
` (J)

�
+

1p
jIj

�
` (I)
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���1
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�

� ` (J)
�p

jIj

�
` (I)
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���1�
1

` (I)

` (I)
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+ 1

�
� ` (J)

�p
jIj

�
` (I)

dist (0; J)

���1
;

and

'00 = h00 (R � S) + 2h0 (R � S)0 + h (R � S)

�! 1p
jIj

�
1

` (I)

�2�
` (I)

dist (0; J)

��
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�
+

1p
jIj

�
1

` (I)

��
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���1
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�

+
1p
jIj

�
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dist (0; J)

���2
` (J)

�

� ` (J)
�p

jIj

�
` (I)

dist (0; J)

���2(�
1

` (I)

�2�
` (I)

dist (0; J)

�2
+

�
1

` (I)

��
` (I)

dist (0; J)

�
+ 1

)

� ` (J)
�p

jIj

�
` (I)

dist (0; J)

���2
;

and thus by induction on `, higher order x-derivatives of
_

'�I of order ` satisfy,

@`x
_

'�I (x; y; yJ) = '(`) �! ` (J)
�p

jIj

�
` (I)

dist (0; J)

���`
:
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Thus we estimate the modulus of the inner product
�
R
(1)
_

'�I ;�
(y; �) ; hn;�J;�

�
by,

�����R(1)_
'�I ;�

(y; �) ; hn;�J;�

����� � Z ����R(1)_
'�I ;�

(�)hn;�J;� (�)

���� d� � R(1)_
'�I ;�


L1

hn;�J;�
L1
jJ j(6.8a)

. C1

�
1

dist (0; J)

�n�1
2 +1 (Id�4x)

N f'�I
L1(Rnx )�L1(Rny )

p
jJ j

.
�

1

dist (0; J)

�n+1
2

` (J)
�

�
` (I)

dist (0; J)

���2Np
jIj jJ j

=

 
1

` (I)
2
dist (0; J)

!n+1
2

` (J)
�
` (I)

n+1

�
` (I)

dist (0; J)

���2Np
jIj jJ j

� 2�d
n+1
2 2�jkj�

(
` (I)

n+1

�
` (I)

dist (0; J)

���2N)p
jIj jJ j . 2�dn+12 2�jkj�

p
jIj jJ j;

if we take � > 2N . Recalling that we required N > 1 + n�1
2 = n+1

2 above, we see that we must take
� > 2N > n+ 1.
Combining the two estimates for the principle term and the remainder term, we have

���DTShn�1;�I;� ; hn;�J;�

E��� � �����P_

'�I ;�
; hn;�J;�

�����+ �����R(1)_
'�I ;�

; hn;�J;�

�����
. 2�d

n�1
2 2�jkj�

p
jIj jJ j+ 2�d

n+1
2 2�jkj�

p
jIj jJ j;

when k � 0, d � 0, N > n+1
2 and � > 2N . We record this as

(6.9)
���DTShn�1;�I;� ; hn;�J;�

E��� . 2�dn�12 2�jkj�
p
jIj jJ j:

Next, we will use the estimate (6.9), in the argument we used above to bound B0;dbelow (f; g), to show that
there is � > 0 such that for all p > 2n

n�1 ,���Bk;dbelow (f; g)��� . 2�jkj�2�jdj� kfkLp kgkLp0 ; for all k � 0; d � 0:

Of course we now have d � 0 instead of the opposite inequality d � 0 used in the previous argument, but
we will see that much of the geometry of the decomposition remains the same.
For k � 0 and d � 0, the estimates (6.9) imply,

���Bk;dbelow (f; g)��� �
������

X
(I;J)2Pk;d
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D
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I;� f;4n;�
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E������ =
������
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0
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D
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g; hn;�J;�

E������
.

X
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0

���DT�hn�1;�I;� f; hn;�J;�g
E���( 1p

jIj

Z
I�
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Z
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Z
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X
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0
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p
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(Z
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J;�g (�)
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. 2�d
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Z
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X
(I;J)2Pk;d

0

(Z
I�

���4n�1;�
I;� f (x)

��� dx)���4n;�
J;�g (�)

��� d�
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which is at most

2�d
n�1
2 2�jkj�

Z
Rn

vuuut X
(I;J)2Pk;d

0
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I�

���4n�1;�
I;� f (x)
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(I;J)2Pk;d

0

���4n;�
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���2d�
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��� dx1J (�)!2
1A

p
2
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1
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�
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0

���4n;�
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���2
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1
p0

� 2�d
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2 2�jkj��1�2:

We have

�p
0

2 =

Z
Rn
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(I;J)2Pk;d

0

���4n;�
J;�g (x)

���2
1A
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2
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Z
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0@ X
I2G: (I;J)2Pk;d

0

1

1A���4n;�
J;�g (x)

���2
1A

p0
2

dx;

and now we repeat some of the geometric constructions relating to Pk;d0 from before. Fix J 2 D and let
IJ 2 G satisfy

cn�1 (J) � ` (IJ) � �1 (J) and IJ � �1 (J) ;

where �1 (J) is the spherical projection J onto Sn�1, and where cn > 0 is chosen small enough that such a
cube IJ exists. Now (I; J) 2 Pk;d0 if and only if

J � K (I) and 2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 ;

which is essentially equivalent to

I � �1J � IJ and

s
2d�1

2 dist (0; J)
� ` (I) �

s
2d+1

dist (0; J)
:

Thus just as in the previous argument, the set of cubes I 2 G with (I; J) 2 Pk;d0 is contained in the �nite

tower of dyadic cubes
�
�(k)IJ

	d+A
k=d�A for some �xed A 2 N. It follows that

P
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1 � 2A and so
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dx . kgkp
0

Lp0
:
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We see that on the other hand, since the cubes J in Dk are pairwise disjoint with measure 2kn,
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Z
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=
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:

Now for each �xed J 2 Dk we have with A as above,
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Altogether then,
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and since

#
n
J 2 Dk : (I; J) 2 Pk;d0

o
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where Kd (I) �
(
J � K (I) : 2

d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2

)
;



PROBABILISTIC FOURIER EXTENSION 63

we have that

�p1 . 2kn
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���4n�1;�
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2

1I (z) dz . 2dn kfkpLp ;

provided p � 2n
n�1 , using the the square function estimate (1.8) as in (6.6) above. Thus we have proved,���Bk;dbelow (f; g)��� . 2�d

n�1
2 2�jkj�

�
2dn
� 1
p kfkLp kgkLp0

. 2�d(
n�1
2 �n

p )2�jkj� kfkLp kgkLp0 ; for k � 0; d � 0;

and so X
k�0

X
d�0

���Bk;dbelow (f; g)��� .X
k�0

2�jkj�
X
d�0

2�d(
n�1
2 �n

p ) kfkLp kgkLp0 . kfkLp kgkLp0 ;

provided p > 2n
n�1 , and � � 1. Note that we only needed strict inequality p >

2n
n�1 in this last line. Moreover,

the previous lines of argument can be simpli�ed when p > 2n
n�1 - see Subsubsection 9.2.1.

6.4. Subforms with k � 0; d � 0. Let 0 < "0 < 1 to be chosen su¢ ciently small at the end of the
argument. We will consider two cases depending on whether ` (J) is larger than dist (0; J)"0 or smaller than
dist (0; J)

"0 , using radial integration by parts in the �rst case, and moment vanishing of hn;�J;� in the second
case. Stationary phase will be used in both cases as d � 0. After dealing with the two cases separately, we
will complete the estimate in the case k; d � 0 using square function techniques as above, but this time we
will need the strict inequality p > 2n

n�1 .

6.4.1. The case ` (J) � dist (0; J)
"0 . We take both k and d to be nonnegative, and begin with the radial

integration by parts formula (4.7) to obtain,D
TSh

n�1;�
I;� ; hn;�J;�
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which is a sum of oscillatory terms having the form of (4.16), but with amplitudes

f'�I (x; y) = '�I (x)

� (x; y)
Z
;

in place of '�I (x), which are then paired with functions @
Z
�
b �J (y; �) in place of b �J (y; �), and where we can

take Z 2 N to be a large positive integer depending only on n.
Now we proceed by treating the integralZ
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Z
S

If'�I ;� (y; �) @Z� b �J (y; �) dyd�
as in the previous case where k � 0 and d � 0, but with the new amplitudes f'�I and pairing functions
@Z�
b �J (y; �) as above.
The end result is that we will obtain the estimate,

(6.10)
���Bk;dbelow (f; g)��� . 2�d�2�k� kfkLp kgkLp0 ; for k � 0; d � 0;
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for some � > 0. Indeed, after applying Theorem 25 to If'�I ;� (y; �), consider �rst the error estimate (3.15),
which shows that

(6.11)
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while we have the following estimate on the pairing function,���@Z� b �J (y; �)��� . � 1
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When the x-derivatives in (6.11) applied to the amplitude
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;

all land on the function hn�1;�I;� - which is the worst case - we obtain from (6.7) the estimate (Id�4x)
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This then gives, �����
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where N > n+1
2 , just as in the similar calculation in (4.17). However, we can choose such an integer N so

that N � n+1
2 + 1 = n+3

2 , and so we get
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provided N � n+3
2 .

On the other hand, the modulus of the principal term Pa�;� (y; �) is bounded by a similar expression
since there are no x-derivatives of the amplitude, and so altogether then we have the inner product bound,�����

Z
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Z
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6.4.2. The case ` (J) � dist (0; J)"0 . Recall that both k and d are nonnegative. The case here is handled by
using the argument of the previous subsection that involved moment vanishing of hn;�J;� and stationary phase,
but now we exploit some additional decay residing in a factor 1

dist(0;J) . Indeed, we will show that in this
case, �����

Z
(0;1)

Z
S

If'�I ;� (yJ ; �) @Z�m�
b �J (y; �) dyd�

����� . 2�dn�12 2�k
�

1
"0
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�p
jIj jJ j:

We take M = 0 in Theorem 25, and as before consider �rst the modulus of the inner product
D
Pf'�I ;�; hn;�J;�

E
with the principal term Pf'�I ;�. Arguing as before, it is bounded by,���DPf'�I ;�; hn;�J;�

E��� � Z
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1� 1
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jIj jJ j:

since `(I)
dist(0;J) .

1
dist(0;J) � ` (J)

� 1
"0 under our assumption that ` (J) � dist (0; J)"0 .

As for the remainder term R
(1)f'�I ;� (y; �), from the �rst four lines in (6.8a) we have
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if we take � > 2N . Thus altogether we have the estimate�����
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Z
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jIj jJ j;

since �
�
1� 1

"0

�
< �� 1

"0
and k � 0.

6.4.3. The square function estimates. From the previous two subsubsections we have the estimate,�����
Z
(0;1)

Z
S

If'�I ;� (yJ ; �) @Z� b �J (y; �) dyd�
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��p
jIj jJ j . 2�dn�12 2�k(�;"0;Z)

p
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with

 (�; "0; Z) � min
�
Z � 1

"0
;
1

"0
� �
�
;

which we note can be made arbitrarily large by taking � � 1
"0
� Z, but we will only need  (�; "0; Z) > 0

below. Now we apply the previous square function arguments to obtain (6.10) for some � > 0 by choosing
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Z su¢ ciently large depending on n. Indeed, following the argument in the previous subsubsection, we have
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P
I2G: (I;J)2C0;00

1 � 2A, which together give,
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by the square function estimate (1.8).
We also have

�p1 = 2
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J2Dk
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and since k � 0, we obtain that #
n
J 2 Dk : (I; J) 2 Pk;d0

o
. 2�kn, which yields
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just as before, by the square function estimate (1.8), provided p � 2n
n�1 .

Altogether then we have���Bk;dbelow (f; g)��� . 2�dn�12 2�k(�;"0;Z)�1�2 . 2�d(n�12 �n
p )2�k(�;"0;Z) kfkLp kgkLp0 ;

which implies (6.10) with

� � min
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� n

p
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provided p > 2n
n�1 and ��

1
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� Z are chosen appropriately. Finally, summing in k; d � 0, we obtainX
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X
d�0

���Bk;dbelow (f; g)��� �X
k�0

X
d�0

2�d�2�k� kfkLp kgkLp0 . kfkLp kgkLp0 :
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6.5. Wrapup. Combining the estimates from all four subsections above yields the desired bound,

jBbelow (f; g)j . kfkLp kgkLp0 ; p >
2n

n� 1 :

Remark 35. Apart from the standard reduction 3 in Section 3, the strict inequality p > 2n
n�1 was used only

in bounding the below form for large d. We will also use p > 2n
n�1 for probabilistic control of the disjoint

form, but only p > 1 for controlling the above form Babove (f; g), to which we turn next.

7. Control of the above form Babove (f; g)

Next we control the above form,

Babove (f; g) �
X

(I;J)2R

D
TSh

n�1;�
I;� ; hn;�J;�

E
;

where

R � f(I; J) 2 G � D : � (I) � �tan (CpseudoJ)g :
For this form, we will use the pigeonholed parameter k = log2 ` (J) already used in the below subforms,
together with a new parameter r = log2

`(�tanJ)
`(I) , measuring the ratio of the side lengths of I and �tanJ . Note

that for �xed k and r, and a �xed cube I 2 G, there is at most a bounded number of cubes J 2 D satisfying
the pigeonholed properties ` (J) = 2k and `(�tanJ)

`(I) = 2r such that (I; J) 2 R. This fact dictates that we
arrange our square function decompositions relative to the cubes I in the grid G (rather than to cubes J in
D as as in Bbelow (f; g)) in the arguments below.
To achieve geometric decay in both of these parameters, we will use the high order moment vanishing

principle of decay for the Alpert wavelets hn�1;�I;� in S for decay in r, an integration by parts in the radial
Fourier variable for decay in k � 0, and the high order moment vanishing principle of decay for the Alpert
wavelets hn;�J;� for decay in k � 0. The stationary phase estimate in Theorem 25 is not needed for the form
Babove (f; g).
Here is the decomposition of R we will use:

R =
[
k2Z

1[
r=1

Rk;r; where for all k 2 Z and r 2 N;(7.1)

Rk;r �
�
(I; J) 2 R : ` (J) = 2k, and ` (�tanJ) � 2r` (I)

	
:

First we reduce matters to consideration of cubes J that are disjoint from a large cube
�
�2M ; 2M

�n
centered

at the origin, which will permit the manipulations used below.

7.1. Reduction to far away dyadic cubes. We now dispense with the �rst set of trivial pairs (I; J) 2 R,
namely those for which J �

�
�2M ; 2M

�n
for some �xed large positive integer M . This can be achieved by

splitting the function g into

g = 1[�2M ;2M ]ng + 1Rnn[�2M ;2M ]ng = g1 + g2;

and noting that

jhTSf; g1ij . kfkL1 kg1kL1 . kfkLp 2Mnp kg1kLp0 ; 1 < p <1:

Then we may assume that g is supported outside
�
�2M ; 2M

�
, and it follows that 4n;�

J;�f =


f; hnJ;�

�
hn;�J;�

vanishes for J �
�
�2M ; 2M

�n
.

Next we deal with the slightly less trivial case of dyadic cubes J that have the origin as one of their vertices.
These cubes are contained in 2n towers of dyadic cubes, and we will derive here the bound corresponding to
the tower fJkg1k=M where Jk =

�
0; 2k

�n
, the other cases being similar. First we note that�

1

�ixn
en � @�

�N
e�ix�� = e�ix�� for all N ,



68 E. T. SAWYER

and so integrating by parts N times gives,
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Thus we obtain
1X
k=N

���DTSf;4n;�
Jk;�

g
E��� � Cp;N

�
1

�

�N
kfkL1 kgkLp0 � Cp;N

�
1

�

�N
kfkLp kgkLp0 ; 1 < p <1;

using the equivalence (2.1) of square function norms on g, together with the �niteness of the �nal factor if
N is chosen su¢ ciently large. Indeed, kgkLp0 � kSgkLp0 where
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and for N > n
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De�nition 36. Set

R� �
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(I; J) 2 R : J \

�
�2N ; 2N

�n
= ;
o

=
n
(I; J) 2 G � D : � (I) � �tan (CpseudoJ) and J \

�
�2N ; 2N

�n
= ;
o
;

and with Rk;r as in (7.1),

Rk;r� �
n
(I; J) 2 Rk;r : J \

�
�2N ; 2N

�n
= ;
o
;(7.2)

Rr� �
[
k

Rk;r� :

Assumption: It is understood from now on that all of the cubes J 2 R considered below in this
section satisfy J \

�
�2N ; 2N

�n
= ;, i.e. J 2 R�.
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7.2. Pigeonholed subforms. Using the moment vanishing of the smooth wavelets hn�1;�I;� , we �rst show
the preliminary estimate that for all r 2 N,

(7.3)
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E��� . ` (I)
�
` (J)
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So consider the case (I; J) 2 Rr�, r � 1. Using (4.10) and (4.11), with cI denoting the center of I, we haveD
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In order to apply the moment vanishing properties of hn�1;�I;� , we need to express � (x) by Taylor�s formula
as well,

� (x) =
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� (cI) + �� (x� cI) ;

and then plug this expression into the previous Taylor formula. The result is that all the terms with a
polynomial in x of order less than � vanish, and we are left withD

TSh
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Z
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where

(7.5) � (�; x) = R� (�i� � [� (x)� � (cI)]) + �� (x� cI)
consists of the remainder term R� and a collection of error expressions in �� (�; x). Because jx� cI j �
j� (x)� � (cI)j, these error expressions satisfy the same pointwise bounds as the original remainder term
R� (�i� � [� (x)� � (cI)]). Recalling from (4.11) that the remainder term R� satis�es jR� (ib)j � jbj�

(�+1)! , and
taking absolute values inside the integral, we obtain,
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where � is the angle between � and � (x) � � (cI). In the case at hand where (I; J) 2 Rr�, we have
� � ` (�tanJ) � `(J)
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which proves the preliminary estimate (7.3).
The case k � 0 will be handled by this last estimate alone, since it yields
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upon discarding the small factor ` (�tanJ)
�.

To handle the case k � 0, we introduce the radial integration by parts principle of decay, that will deliver
geometric gain in k. First we observe that (I; J) 2 R� implies I � �tan (CpseudoJ), and so for v = �tancJ
and for x 2 �tan (CpseudoJ) we have

v � � (x) � c > 0;

and �
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Integrating by parts N times then gives,
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and then we have the second preliminary estimate,
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We must now combine these two preliminary estimates in the case k � 0. As usual, to achieve this we

iterate the two associated formulas (7.4) and (7.8) before taking absolute values inside the resulting integral.
Thus we write,
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is as in (7.5) above, and � (�; x) satis�es the estimates given there. Now we take absolute values inside the
integral, and using the estimates developed above, we obtain the following inequality for k � 0,
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Combining (7.7) and (7.10) gives
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where Rk;r� is de�ned in (7.2). Indeed, we have from (7.11) thatX
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where the square function estimate (2.1) shows that0B@Z
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since for each I 2 G, there is at most one cube J 2 D such that (I; J) 2 Rk;r� . On the other hand, for each
�xed J 2 D, the number of cubes I 2 G such that (I; J) 2 Rk;r� is approximately 2r(n�1), and soX
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for 1 < p <1 by the square function estimate (1.8) again.

7.2.1. The enlarged form. For k � 0 de�ne
Ek;r� �

�
(I; J) 2 G � D� : ` (J) = 2k, ` (�tanJ) = 2r` (I) , and I � Cpseudo2

k�tanJ
	
;

and de�ne the enlarged form,
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1X
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X
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:

Then for each �xed J 2 D, the number of cubes I 2 G such that (I; J) 2 Ek;r� is approximately j2
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for 1 < p <1 by the square function estimate (1.8) again.

7.3. Wrapup. Finally, taking � > n�1
2 , N > 2� and summing the above estimates over r 2 N and k 2 Z,

gives, ������
X

(I;J)2R�

D
TS 4n�1;�

I;� f;4n;�
J;�g

E������ . kfkLp kgkLp0 :
Combined with the reduction in the �rst subsection, we obtain the desired bound,

jBabove (f; g)j . kfkLp kgkLp0 ; 1 < p <1:

Remark 37. The only restriction on p here is 1 < p < 1, and so the above form Babove (f; g) is bounded
for all 1 < p <1.

8. Control of the upper disjoint form Bupperdisjoint (f; g)

The principle of stationary phase is not used for the disjoint subforms, as the critical point of the phase
now lies outside the support of the amplitude. When k � 0 we must introduce the radial integration by parts
principle of decay to bound the subforms, while in the case k � 0, we must use the high order vanishing
moments of hn;�J;�. Just as in the case of the below form Bbelow, combining the appropriate formulas, and
staying the introduction of absolute values until the very end, will yield the desired inequalities. There is
however a crucial di¤erence between the cases d � 0 and d < 0 in the case of disjoint subforms Bk;d;mdisjoint (f; g),
and we will treat the two cases Bupperdisjoint (f; g) and B

lower
disjoint (f; g) in separate subsections, as the resonant lower

disjoint form with d < 0 requires probability and interpolation techniques.
In fact, when d � 0, the standard principles of decay apply to give the required control. However, as d

becomes increasingly negative, resonance begins to set in more strongly, and by the time d = �m, none of the
standard principles of decay are any longer of use. Instead we must invoke classical methods of estimating L2

and L4 bounds, but using probability in order to obtain improved bounds for functions restricted to smooth
Alpert pseudoprojections.
Recall that

Bk;d;mdisjoint (f; g) �
X

(I;J)2Pk;d
m

D
TS 4n�1;�

I;� f;4n;�
J;�g

E
;

where Pk;dm �
n
(I; J) 2 Pm : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
;

and Pm �
�
(I; J) 2 G � D : 2m+1I � S and �tan (J) � �

�
2m+1CpseudoI

�
n � (2mCpseudoI)

	
;

and that the parameters (k; d;m) run over

k 2 Z; m 2 N; and � log2
1

` (I)
� d <1:

We also decomposed the disjoint form into upper and lower components determined by d nonnegative and
negative respectively,

Bdisjoint (f; g) = Bupperdisjoint (f; g) + B
lower
disjoint (f; g) ;

Bupperdisjoint (f; g) �
1X
m=1

X
k2Z

X
d�0

Bk;d;mdisjoint (f; g) and B
lower
disjoint (f; g) �

1X
m=1

X
k2Z

X
d<0

Bk;d;mdisjoint (f; g) :

8.1. Upper disjoint subforms with d � 0. When k = 0, we obtain geometric gain simultaneously in
m � 1 and d � 0 using the tangential integration by parts principle of decay. In order to handle arbitrary
k 2 Z, we must include additional principles of decay combined with tangential integration by parts. For
k � 0; we include radial integration by parts, and taking absolute values inside the integral at the very end,
we will obtain below that, ���DTShn�1;�I;� ; hn;�J;�

E��� . 2�kN12�N2(m+d)
p
jIj jJ j:
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For k � 0, we include instead the moment vanishing properties of hn;�J;�, and taking absolute values inside
the integral at the very end, we will obtain below that,���DTShn�1;�I;� ; hn;�J;�

E��� . 2�jkj�2�N2(m+d)
p
jIj jJ j:

With these estimates in hand, together with the square function arguments used repeatedly above, we
obtain, ���Bk;d;mdisjoint (f; g)

��� . 2��jkj2��(m+d)�Z ���4n�1;�
I;� f

�����Z ���4n;�
J;�g

���� ; for p � 2n

n� 1 ;

for some � > 0 provided �, N1 and N2 are chosen su¢ ciently large, and �nally then,

X
k2Z

X
d�0

1X
m=1

���Bk;d;mdisjoint (f; g)
��� . kfkLp kgkLp0 ; for p � 2n

n� 1 :

Here is a brief sketch of the two inner product estimates mentioned above, followed by the appropriate
square function estimate.

8.1.1. The case k � 0; d � 0. Combining the radial integration by parts formula (4.7),D
TSh

n�1;�
I;� ; hn;�J;�
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Z
Rn�1

Z
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'�I (x) @
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b �J (y; �) dxdyd�;

with the tangential integration by parts formula (4.18),
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:
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Taking absolute values inside the integral, and using (4.8) together with min
n

1
�`(J) ;

1
�

o
. 1

`(J) , and (4.20),

we obtain,

(8.1)
���DTShn�1;�I;� ; hn;�J;�

E��� . 2�kN12�N2(m+d)
p
jIj jJ j;

as required.

8.1.2. The case k � 0; d � 0. This time we use (4.18),
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together with (4.13),D
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to obtain,D
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where in the second line above, we have reversed the change of variable in (3.8). Now from the estimates
used in (4.20) and (4.14) we obtain,���DTShn�1;�I;� ; hn;�J;�

E��� . 2�jkj�2�N(m+d)pjIj jJ j;
as required.

8.1.3. The square function argument for d � 0. We follow the square function argument used for the below
form Bk;dbelow (f; g) when k � 0; d � 0. The only di¤erence is that we now accumulate a factor of a large power
of 2m depending on n and p, but this will be o¤set by gains from integration by parts in both parameters m
and d - and this uses in a crucial way that d � 0. We begin by writing the sum over (I; J) 2 Pk;dm as,X
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We �rst consider �2 which satis�es,
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since for a �xed J with ` (J) = 2k, the number of cubes I such that
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Now for each J 2 Dk, the number of cubes I 2 G with (I; J) 2 Pk;dm is approximately 2mn, and so we
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where by the extension of (6.5) to m � 1,X
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9. Control of the lower disjoint subform Blowerdisjoint (f; g)

Here we bound the lower disjoint form
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but taken only over d < 0, which is equivalent to dist (0; J) . 1
`(I)2

. This restriction describes the �lower�
region of the disjoint form, and accounts for the terminology.
Note that for �xed � 2 Rn, the wavelength of the oscillation of the function x ! e�i�(x)�� is roughly

1
j�j �

`(I)2

2d
, while the depth of the patch of the sphere � (I) in the direction toward � is roughly ` (I) sin � �

2m` (I)
2. Thus we will have oscillation along the patch � (I) if and only if the wavelength `(I)2

2d
is less than

the depth 2m` (I)2, i.e. m� jdj, while we will have smoothness along the patch if and only if m� jdj.
On the other hand, for � 2 J , the wavelength of the oscillation of the function � ! e�i�(x)�� is roughly

1
cos](�(x);cJ ) � 1 (unless the unit vectors

cJ
jcJ j and � (cI) are nearly orthogonal), while the depth of the cube

in the diretion of � is roughly ` (J) = 2k. Thus we will have oscillation along the cube J if and only if the
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wavelength 1 is less than the depth 2k, i.e. k � 0, while we will have smoothness along the cube if and only
if k � 0.

Conclusion 38. The most problematic case occurs when d < 0 and both m � jdj and k � 0.

We begin by illustrating our approach to controlling resonance in the most problematic of the subcases
in the next subsection, and it is here that we require the use of probability and an interpolation argument.
In such instances where we need to use expectation over �martingale transforms�, we will also need to apply
this expectation to norms rather than bilinear forms, which introduces some complications.
In order to handle cases with partial resonance in the subsequent subsection, we introduce a di¤erent

decomposition of the disjoint form into resonant pipes that respects resonance when d < 0, and then apply
principles of decay along with probability and the interpolation argument to control these remaining subcases.

9.1. The extreme resonant case. The most resonant of the disjoint subforms is Bk;d;mdisjoint (f; g) = B
0;�m;m
disjoint (f; g)

when ` (J) = 1 and d = �m. Fix (I; J) 2 P0;�mm and let Jmmax [I] be any dyadic cube in D satisfying the
following conditions,

` (Jmmax [I]) =
1

` (I)
;(9.1)

dist (0; Jmmax [I]) � 2�m

` (I)
2 ;

�tanJ
m
max [I] � 2m+1I n 2m�1I;

` (�tanJ
m
max [I]) = 2m` (I) ;

where ` (�tanJmmax [I]) denotes the diameter of the quasicube �tanJ
m
max [I]. If ` (I) = 2

�s with s � m (which
follows from (9.1) and ` (�tanJmmax [I]) . 1), then we have

` (Jmmax [I]) = 2
s; dist (0; Jmmax [I]) � 22s�m; ` (�tanJ

m
max [I]) =

` (Jmmax [I])

dist (0; Jmmax [I])
= 2m�s:

At this point we note that the cubes Jmmax [I] are essentially the maximal dyadic cubes that �t inside the
annular conic region given by (9.1), and hence there are roughly dist(0;Jmmax[I])

`(Jmmax[I])
� 22s�m

2s � 2s�m such cubes

stacked away from the origin. We enumerate these cubes by fJm;tmax [I]g
c2s�m

t=1 and let

(9.2) Jm;�max [I] �
c2s�m[
t=1

Jm;tmax [I]

denote their union. Thus Jm;�max [I] is a quasirectangle of �length�roughly dist (0; J
m
max [I]) � 22s�m, and �width�

roughly 2s - we say �quasi�because Jm;�max [I] is a union of dyadic cubes J
m;t
max [I] staggered in the direction

of the annular conic region. Note that there are at most Cn such quasirectangles Jm;�max [I] associated to any
given cube I 2 G [S].

Remark 39. Since quasirectangles do not respect resonance (which varies along the quasirectangle), they
will not play a part in the proof going forward, but will instead be replaced by pipes in the next subsection.

If � � ]
�
cJmmax[I] � � (cI) ;� (cI)

?
�
is the angle between the vector cJmmax[I] � � (cI) and the unit vector

� (cI), and if � � ]
�

cJmmax[I]

jcJmmax[I]j
;� (cI)

�
is the angle between the unit vectors

cJmmax[I]

jcJmmax[I]j
and � (cI), then
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� � 2m` (I) and we have
�

2
� � = ]

�
cJmmax[I] � � (cI) ;� (cI)

�
(9.3)

= ]
 
cJmmax[I] �

cJmmax[I]��cJmmax[I]�� ;� (cI)
!
+ ]

 
cJmmax[I] � � (cI) ; cJmmax[I] �

cJmmax[I]��cJmmax[I]��
!

= ]
 
cJmmax[I]��cJmmax[I]�� ;� (cI)

!
+O

0BB@
����� (cI)� cJmmax[I]

jcJmmax[I]j

������cJmmax[I] � � (cI)��
1CCA � 2m` (I) + 2m` (I)

dist (0; Jmmax [I])

= 2m` (I)

�
1 +

1

dist (0; Jmmax [I])

�
� 2m` (I)

�
1 + 2m�2s

	
� 2m` (I) ;

since s � m. Thus it follows that there is neither oscillation nor smoothness of the inner productD
TS 4n�1;�

I;� f;4n;�
J;�g

E
=

Z
J

�Z
I

D
f; hn�1;�I;�

E
hn�1;�I;� (x) ei�(x)��dx

�
4n;�
J;� g (�) d�

in the integral over I in braces, since the �tilted depth�of � (I) in the direction �
2 � � is given by

tilted depth � ` (I) cos� = ` (I) sin
��
2
� �

�
� 2m` (I)2 ;

and so

(9.4) wavelength � 1

dist (0; Jmmax [I])
= 2m` (I)

2 � tilted depth :

Of course there is neither oscillation nor smoothness in the integral over J either since ` (J) = 1 and the
wavelength coming from the sphere is approximately ` (J) = 1 as well.
Then (I; J) 2 P0;�mm essentially if and only if J � Jm;�max [I] and ` (J) = 1. There are roughly

1
`(I)n cubes

J � Jm;tmax [I] of side length 1 for each 1 � t � c2s�m, and we may restrict our attention to the cubes I having
side length 2�s with s � m, that are contained in a cube Q where

(9.5) Q � S with ` (Q) � 2m�s, such that Jm;�max [I] � Jm;�max [I
0] for all such cubes I � Q:

We also then set

(9.6) Q� �
[
I�Q

Jm;�max [I] ;

which is approximately equal to any of the Jm;�max [I] taken individually, and thus Q
� is a quasirectangle of

length roughly 22s�m, and width roughly 2s. Thus we have de�ned cube / quasirectangle pairs (Q;Q�)
which we now analyze a bit further. Recall from (9.1) that ` (�tanQ�) � 2m` (I) = 2m�s.
We write

(9.7) Q�;Qm;sf �
X

I�Q: `(I)=2�s
4n�1;�
I;� f and P�;0;Q

�

m;s g �
X

J�Q�: `(J)=1

4n;�
J;�g;

and we claim that

E�
2D

������
1X
m=1

1X
s=m

X
Q

D
TSAS�;�a Q�;Qm;sf;P

�;0;Q�

m;s g
E������ �

1X
m=1

1X
s=m

X
Q

E�
2D

���DTAS�;�a Q�;Qm;sf;P
�;0;Q�

m;s g
E���(9.8)

. kfkLp kgkLp0 ; p � 2n

n� 1 ;

where we recall that the parameters k and d are �xed at k = 0 and d = �m. It is here in (9.8) that
our argument requires averaging over all involutive smooth Alpert multipliers on the left hand side of the
inequality.
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9.1.1. The interpolation argument. In order to illustrate the probabilistic methods in a relatively simple
situation, we �rst prove (9.8) when the sum is taken only over s = m 2 N, so that both Q and Q� reduce to
cubes of side length roughly 1. Thus there are only a bounded number of such cube / cube pairs (Q;Q�),
which for convenience we treat as a single pair (Q0; Q�0). We claim,

(9.9) E�
2G

�����
1X
m=1

D
TSAS�;�a Q�;Q0

m;mf;P
�;0;Q�

0
m;m g

E����� . kfkLp kgkLp0 ; p >
2n

n� 1 :

We note that the expectation E�
2G
will circumvent some of the geometric L4 arguments that go back to

Fe¤erman [Fef] (see also [Bou], [Gut] and [Tao4]). Recall that we are in the case d = �m, and that

Q�;Q0
m;mf =

X
I�Q0: `(I)=2�m

4n�1;�
I;� f and P�;0;Q

�
0

m;m g �
X

J�Q�
0 : `(J)=1

4n;�
J;�g;

where Q0 is a cube in Rn�1 centered at the origin with side length approximately 1, and Q�0 is a cube in Rn
at distance 2m from the origin with side length approximately 2m, and such that dist (Q0; �tanQ�0) � 1. We
will again use b' to denote the Fourier transform of '. Thus we must estimateD

TSQ
�;Q0
m;mf;P

�;0;Q�
0

m;m g
E
=

*
TS

X
I2Gm[S] and I�Q0

4n�1;�
I;� f;

X
J�Q�

0 : `(J)=1

4n;�
J;�g

+
(9.10)

=
X

I2Gm[S] and I�Q0

X
J�Q�

0 : `(J)=1

Z
S

Z
Rn
e�i�(x)�� 4n�1;�

I;� f (x)4n;�
J;� g (�) dxd�

=

Z
Rn

8<:
Z
S

e�iz��
X

I2Gm[S] and I�Q0

4n�1;�
I;� f

�
��1 (z)

�
@��1 (z) dz

9=; X
J�Q�

0 : `(J)=1

4n;�
J;�g (�) d�

�
Z
Rn
cf� (�) gm (�) d�;

where cf� denotes the Fourier transform of f� as in Subsection 5, and

gm (�) �
X

J�Q�
0 : `(J)=1

4n;�
J;�g (�) = P

�;0;Q�
0

m;m g (�) ;

f� (z) � Q�;Q0
m;mf

�
��1 (z)

�
@��1 (z) =

X
I2Gm[S] and I�Q0

4n�1;�
I;� f

�
��1 (z)

�
@��1 (z)

=
X

I2Gm[S] and I�Q0

D
f; hn�1;�I;�

E
hn�1;�I;�

�
��1 (z)

�
@��1 (z) �

X
I2Gm[S] and I�Q0

f I� (z) ;

and where the spherical measure f I� has mass roughly
��� bf (I)��� 2�m(n�1) and is supported in Sn�1.

The bound (9.9) now follows immediately from Hölder�s inequality and Proposition 29, upon noting that
Q�m in Proposition 29 is the pseudoprojection Q�m;m here. Indeed, from Proposition 29 we have

1X
m=1

E�
2G

TSAS�;�a Q�;Q0
m;mf


Lp(j'mj4)

.
1X
m=1

2�m"n;p kfkLp(j'mj4)

and then in particular,

E�
2G

�����
1X
m=1

D
TSAS�;�a Q�;Q0

m;mf;P
�;0;Q�

0
m;m g

E����� �
1X
m=1

E�
2G

TSAS�;�a Q�;Q0
m f


Lp(j'mj4)

P�;0;Q�
0

m;m g

Lp0(j'mj4)

�
1X
m=1

2�m"n;p kfkLp(j'mj4) kgkLp0(j'mj4) . kfkLp kgkLp0 ; where "n;p > 0 for p >
2n

n� 1 ;m 2 N:

But we can in fact obtain more. De�ne the smooth Alpert pseudoprojection

(9.11) P
�;Q�

0
m;mg �

X
k2Z

X
J�Q�

0 : `(J)=2
k

4n;�
J;�g;
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where of course the restriction J � Q�0 means that k � m in the sum above (contrast this with the restriction
to k = 0 in P�;0;Q

�
0

m;m g). Then we have the stronger inequality in which the sum over k is included,

E�
2G

�����
1X
m=1

D
TSAS�;�a Q�;Q0

m;mf;P
�;Q�

0
m;mg

E����� �
1X
m=1

E�
2G

TSAS�;�a Q�;Q0
m;mf


Lp

P�;Q�
0

m;mg

Lp0

(9.12)

�
1X
m=1

2�m"p;n
Q�;Q0

m;mf

Lp

P�;Q�
0

m;mg

Lp0

. kfkLp kgkLp0 ; p >
2n

n� 1 ;m 2 N:

Remark 40. There is no direct use here of square function estimates to add in the parameter m. Instead,
we use expectation, geometric decay, and the boundedness of connected smooth Alpert pseudoprojections on
Lp - a pseudoprojection is connected if the cubes are summed over a connected set in the grid. This feature
will persist in summing over the additional parameters s and d below.

9.2. The resonant pipe decomposition. In order to complete the proof of the main inequality (9.8), we
will abandon the decomposition into cones parameterized by m, and distances parameterized by d, since
this decomposition does not respect resonance in the inner products. Instead, we will decompose the lower
disjoint form,

Blowerdisjoint (f; g) =
X
k2Z

X
d<0

1X
m=1

Bk;d;mdisjoint (f; g) =
X

I2Gs[S]

X
k2Z

X
d<0

1X
m=1

X
(I;J)2Pk;d

m

D
TS 4�

I;� f;4
�
J;�g

E
;

into �truncated pipes�P Is;w, instead of the quasirectangles J
m;�
max [I] introduced in (9.2) above, using new

parameters w; r in place of m; d. The advantage of this new decomposition into pipes is that it does indeed
respect resonance.
Fix s 2 N and consider a cube I 2 Gs [S]. Let uIn = �(cI) and let

�
uI
�0
=
�
uI1; :::;u

I
n�1
	
be an

orthonormal basis for the space � (cI)
? perpendicular to un. We will use the coordinate system

n�
uI
�0
;uIn

o
in Rn in connection with the cube I 2 Gs [S], so that as we vary I 2 Gs [S] the coordinate systemsn�
uI
�0
;uIn

o
rotate (Span

�
uIn
	
and Span

�
uI
�0
are determined canonically under rotation, but not the

individual basis vectors uI1; :::;u
I
n�1).

For convenience in notation, we momentarily suppose without loss of generality that I = I0 2 Gs [S] is
centered at the origin in S, and consequently we can take

�
uI1; :::;u

I
n�1;u

I
n

	
to be the standard orthonormal

basis fe1; :::; en�1; eng in Rn, and � = (�1; :::; �n) =
�
�0; �n

�
2 Rn is the usual representation of a point �

in Rn. Then the pairs (I0; J) 2 G � D for which we have resonance on both sides of the inner product, are
precisely those satisfying ` (J) � 1 and,

1

dist (0; J)
� tilted depth � 2�s sin �;(9.13)

i.e. j�j � 2s

sin �
= 2s

j�j���0�� ; for � 2 J;

i.e. 2�s�1 �
���0�� � 21�s; for � 2 J;

where � is the angle � makes with the positive �n-axis. Thus the union P
I0
s of the J 0s satisfying ` (J) � 1 and

(9.13) is essentially the di¤erence of two tubes, namely the 2s+1-tube and the 2s�1 tube that are oriented
vertically with length 22s and width 2s, and centered on say the plane �n = 0. We refer to P I0s as the
resonant 2s-pipe for I0. In terms of the projection ��(cI0)

? of Rn onto the horizontal plane perpendicular
to � (cI0), we have

P I0s �
�
� 2 Rn : dist

�
cI0 ; ��(cI0)

?�

�
� 2s

�
;

since
���0�� � dist�cI0 ; �(cI0)?�

�
.

We also consider the truncated pipes

P I0s;w � P I0s \ LI0w ; 1 � w � s:
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that are given as the intersection of the pipe P I0s and the horizontal slab LI0w �
�
� 2 Rn : 22s�w�1 < �n � 22s�w

	
that is distance 22s�w�1 above the plane �n = 0 and has height roughly 2

2s�w.
We now extend this notion of pipes to all I 2 Gs [S].

De�nition 41. For I 2 Gs [S] and 0 � w � s, de�ne the truncated pipe P Is;w to be the rotation of the pipe
P I0s;w by any rotation R that takes � (cI0) to � (cI), i.e.

P Is;w � RP I0s;w �
n
� 2 Rn : dist

�
cI0 ; ��(cI)?�

�
� 2s

o
;

where ��(cI)? = �
R�(cI0)

? .

Note that if
���0��� 2s then e�i�(x)�� oscillates at least j�

0j
2s times along the span of � (I), so that integration

by parts is e¤ective, while if
���0�� � 2s then e�i�(x)�� varies by at most j�

0j
2s along the span of � (I), so that

the vanishing moment properties of h�I;� are e¤ective.

De�nition 42. For r > 0 de�ne the n-dimensional annulus by An (0; r)

An (0; r) � Bn (0; r) nBn
�
0;
r

2

�
;

which we sometimes denote by simply A (0; r). De�ne the upper quarter annulus A+ (0; r) by

A+ (0; r) �
n
� 2 A (0; r) : �n �

r

4

o
:

Finally, we note that the upper quarter annulus A+
�
0; 22s�w

�
is essentially the union of the truncated

pipes P Is;w = P Is \ LIw for I 2 Gs [S], i.e. A+
�
0; 22s�w

�
�

[
I2Gs[S]

P Is;w, and that the overlap of the truncated

pipes P Is;w is essentially 2
w(n�1), i.e.

1A+(0;22s�w) (�) .
1

2w(n�1)

X
I2Gs[S]

1P I
s;w
(�) . 1CA+(0;22s�w+c) (�) :

To complete control of the disjoint form in the case d < 0, it su¢ ces to prove the following lemma. We will
later establish average control of Lp norms instead of inner products, something that is needed to complete
the proof of Theorem 2.

Lemma 43. Suppose s 2 N and 0 � w � s. Then

E�
2Gs[S]

���DTSAS�;�a Qsf;P
�
A+(0;22s�w)

g
E��� . 2�"n;ps kfkLp kgkLp0 ; for p >

2n

n� 1 ;

where the implied constant is independent of s and w.

To prove the lemma, �x 0 � w � s and a 2 2Gs[S], and consider the positive expression,

(9.14) Zas;w �

������
X

I2Gs[S]

X
J�P I

s;w

Z
Rn

�Z
S

e�i�(x)��AS�;�a Qsf (x) dx

�
4n;�
J;� g (�) d�

������ ;
which includes only the portion of the smooth pseudoprojection P�

A(0;22(s�w))
g given by P�

P I
s;w
g. We begin

by establishing control of Zas;w, and then control the sums over cubes J in expanding geometric annuli away
from the truncated pipes P Is;w, by applying decay principles to obtain geometric decay factors. Finally we
apply the arguments used to bound Zas;w to each of these collections of annuli, and then sum up the annuli
to cove all of the upper quarter annulus A+

�
0; 22s�w

�
, which completes the proof of the lemma.

De�nition 44. De�ne the expanded truncated pipes

P I0s;w [r] =
�
� 2 Rn : �r� 2 P I0s;w

	
;

where �r� =
�
�0

2r ;
�n
Cn

�
is a nonisotropic dilation for r 2 Z and Cn is chosen su¢ ciently large. Thus

P I0s;w [r] is a truncated pipe of height roughly Cn2
2s and width roughly 2s+r centered at a point horizontally

located away from that of P I0s;w. Then de�ne the rotated expanded truncated pipes P
I
s;w [r] for I 2 Gs [S], by

P Is;w [r] � RP I0s;w [r] for any rotation R in Rn that takes cI0 to cI .
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Note that if Cn is chosen su¢ ciently large in the de�nition of P I0s;w (r), then for every I 2 Gs [S], the upper
quarter annulus A+

�
0; 22s

�
is contained in the union of the tube T Is;w and the pipes P

I
s;w (r) for r � 2s, i.e.

(9.15) A+
�
0; 22s

�
� T Is;w [

 
2s[
r=1

P Is;w [r]

!
; for all I 2 Gs [S] :

We will need to choose Cn even larger in Subsubsection 9.3 below.

De�nition 45. For a 2 2Gs[S] and r � 0, de�ne

(9.16) Zas;w [r] �

������
X

I2Gs[S]

X
J�P I

s;w[r]

Z
Rn

�Z
S

e�i�(x)��AS�;�a Qn�1s f (x) dx

�
4n;�
J;� g (�) d�

������ :
We will now control the average of this sum of inner products, as well as the stronger average norm

estimates, see (9.18) below. First, we consider the two extreme cases w = 0 and w = s, which are easily
handled by two di¤erent techniques. Then we combine these two proofs to give a single argument for the
general case.

De�nition 46. We de�ne

Rk;ws (r) �
�
(I; J) 2 Gs [S]�Dk : J � P Is;w [r]

	
to be the set of pairs (I; J) 2 G � D with ` (I) = 2�s, ` (J) = 2k and J � P Is;w (r). When r = 0 we write
simply

Rk;ws = Rk;ws (0) :

For symmetry of notation, we also introduce tubes bI0 [w] that are essentially the same as the tubes T Is;w.
For I 2 Gs [S] and 0 � w � s, de�nebI0 [w] � [�2s; 2s]n�1 � h22(s�w�1); 22(s�w)i � T I0s;w;

and extend this de�nition to bI [w] by rotation , so that bI [w] � T Is;w and bI [0] � bI.
9.2.1. The case w = 0 (Direct Argument): In the case w = 0, we �rst consider Zas;0 with the sequence
a = 1 of all 10s, since the arguments in this subsubsection take absolute values inside anyways, and do not
use probability. The bound for the subform

Z1s;0 =

������
1X
s=1

X
I2Gs[S]

X
J2D: J�bI

D
TS 4n�1;�

I;� f;4n;�
J;�g

E������
applies more generally to indicators 1I applied to f , in place of smooth Alpert pseudoprojections 4n�1;�

I;�

applied to f , and to 1bI in place of PJ2D: J�bI 4n;�
J;�. To see this, we �rst note that

kTS1IfkLp(bI) =

�Z
bI
����Z
I

e�i�(x)��f (x) dx

����p d��
1
p

�
���bI��� 1p jIj 1p0 �Z

I

jf (x)jp dx
� 1

p

= 2s
n+1
p 2

�sn�1
p0 k1IfkLp(S) = 2

�s"p;n k1IfkLp(S) ;
where

"p;n �
n� 1
p0

� n+ 1

p
=
n� 1
p

�
p� 1� n+ 1

n� 1

�
=
n� 1
p

�
p� 2n

n� 1

�
:

Then with s �xed, we continue with

X
I2Gs[S]

��
TS1If;1bIg��� � X
I2Gs[S]

kTS1IfkLp(bI) kgkLp0(bI) �
0@ X
I2Gs[S]

kTS1IfkpLp(bI)
1A 1

p
0@ X
I2Gs[S]

kgkp
0

Lp0(bI)
1A 1

p0

.

0@ X
I2Gs[S]

2�sp"p;n k1IfkpLp(S)

1A 1
p

kgkLp0([I2Gs[S]bI) � 2�s"p;n kfkLp(S) kgkLp0 (Rn) ;
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and �nally we sum over s 2 N to obtain������
1X
s=1

X
I2Gs[S]



TS1If;1bIg�

������ �
1X
s=1

X
I2Gs[S]

��
TS1If;1bIg��� � Cs;n kfkLp(S) kgkLp0 (Rn) ;

where

Cs;n �
1X
s=1

2�"p;ns <1 for p >
2n

n� 1 :

Corollary 47. If we enlarge the cubes I by a factor 2t to I [t] � 2tI, and if we enlarge the tubes bI transversally
(meaning perpendicular to � (cI)) by a factor of 2r to bI [r], then we obtain the estimate,������

X
I2Gs[S]

D
TS1I[t]f;1bI[r]g

E������ � C2
tn�1

p0 2r
n�1
p 2�s"p;n kfkLp(S) kgkLp0 (Rn) :

Proof. Apply the above argument and use
����bI [r]��� jI [t]jp�1� 1

p

= 2r
n�1
p 2

tn�1
p0
����bI��� jIjp�1� 1

p

. �

Remark 48. The corollary includes the smooth Alpert wavelets case,

(9.17)
X

I2Gs[S]

X
J2D: J�bI

���DTS 4n�1;�
I;� f;4n;�

J;�g
E��� � C 0�2

�s"p;n kfkLp(S) kgkLp0 (Rn) :

We now turn to obtaining the stronger estimate

(9.18)
1X
s=1

TSQn�1;�s f

Lp(A+(0;22s))

. kfkLp(S) ;

and for this, we must consider the smooth Alpert wavelets case (9.17), so that we can use integration by
parts in the x-variable in the expanded pipes.

Expanded pipes

Consider an expanded truncated pipe P I0s;0 [r]. For r � 0, we claim that the wavelength on I0 in the
inner product is much smaller than the diameter 2�s of I0, and so we can use integration by parts to gain
a geometric decay factor of CN2�rN for all N � 1. Indeed, for � 2 J with J � P I0s;0 [r] and 0 � r . s, the
wavelength of the exponential factor e�i�(x)�� is roughly 1

j�j �
1
22s , and referring to (9.13), we see that the

tilted depth of I0 in the direction �, is roughly ` (I) sin �, where sin � =
j�0j
j�j �

2r+s

22s . Altogether then,

tilted depth � ` (I) sin � � 2�s 2
r+s

22s
= 2r

1

22s
= 2r wavelength;

and so the exponential factor e�i�(x)�� oscillates roughly 2r times as x traverses I0.
Thus D

TS 4n�1;�
I;� f;4n;�

J;�g
E
=

Z �Z
e�i�(x)�� 4n�1;�

I;� f (x) dx

�
4n;�
J;� g (�) d�;

where for � 2 J and J � P I0s;0 (r), the integral in braces satis�es,Z
e�i�(x)�� 4n�1;�

I;� f (x) dx =

Z �
1

�i@x (� (x) � �)
@x

�N
e�i�(x)�� 4n�1;�

I;� f (x) dx

= (�1)N
Z
e�i�(x)��

�
@x

1

�i�0 (x) � �

�N
4n�1;�
I;� f (x) dx;

and hence is dominated in modulus by CN2�rN
R ���@N 4n�1;�

I;� f (x)
��� dx since

j�0 (x) � �j �
���0�� � 2r+s �

also � 1

` (I)

tilted depth

wavelength
& 2r+s

�
; for � 2 P I0s;0 (r) :
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In conclusion, for any cube I 2 Gs [S] we have

(9.19)

����Z e�i�(x)�� 4n�1;�
I;� f (x) dx

���� . CN2
�(r+s)N

Z ���@N 4n�1;�
I;� f (x)

��� dx; � 2 P Is;0 [r] :

Plugging this estimate back into the inner product gives���DTS 4n�1;�
I;� f;4n;�

J;�g
E��� �

Z ����Z e�i�(x)�� 4n�1;�
I;� f (x) dx

���� ���4n;�
J;�g (�)

��� d�(9.20)

. CN2
�(r+s)N

�Z ���@N 4n�1;�
I;� f

�����Z ���4n;�
J;�g

���� :
For use later on, we note that for any K 2 G [S] with ` (K) � 2�s, we can sum over I 2 Gs [K] in (9.19) to
obtain

(9.21)

����Z e�i�(x)��Qn�1;�K;s;� f (x) dx

���� . CN2
�(r+s)N

Z ���@NQn�1;�K;s;� f (x)
��� dx; � 2 PKs;0 [r] ;

where
Qn�1;�K;s;� �

X
I2Gs[K]

4n�1;�
I;� ;

and with a similar estimate of the corresponding inner product.
We now apply the argument used above for bounding

Z1s;0 �

������
X

I2Gs[S]

X
J�T Is;0

Z
Rn

�Z
S

e�i�(x)�� 4n�1;�
I;� f (x) dx

�
4n;�
J;� g (�) d�

������ ;
to the expanded truncated pipes P Is;0 [r] in place of the tubes T

I
s;0, to obtain from Corollary 47 and the

estimate (9.19), thatTS 4n�1;�
I;� f


Lp(P I

s;0[r])
=

 Z
P I
s;0[r]

����Z
I

e�i�(x)�� 4n�1;�
I;� f (x) dx

����p d�
! 1

p

(9.22)

�
��P Is;0 [r]�� 1p jIj 1p0 �CN2�(r+s)Np Z

I

���@N 4n�1;�
I;� f (x)

���p dx� 1
p

� CN2
�(r+s)N2r

n�1
p

��P Is;0�� 1p jIj 1p0 �Z
I

���@N 4n�1;�
I;� f (x)

���p dx� 1
p

� CN2
�r(N�n�1

p )2�s"p;n2�sN
@N 4n�1;�

I;� f

Lp(S)

:

Thus0@ X
I2Gs[S]

TS 4n�1;�
I;� f

p
Lp(P I

s;0[r])

1A 1
p

. CN2
�r(N�n�1

p )2�s"p;n

0@ X
I2Gs[S]

2�sNp
@N 4n�1;�

I;� f
p
Lp(S)

1A 1
p

. CN2
�r(N�n�1

p )2�s"p;n kfkpLp(S) ;
and so also,

Z1s;0 [r] �

������
X

I2Gs[S]

X
J�P I

s [r]

Z
Rn

�Z
S

e�i�(x)�� 4n�1;�
I;� f (x) dx

�
4n;�
J;� g (�) d�

������(9.23)

�
X

I2Gs[S]

TS 4n�1;�
I;� f


Lp(P I

s;0[r])
kgkLp0(P I

s;0[r])

�

0@ X
I2Gs[S]

TS 4n�1;�
I;� f

p
Lp(bI)

1A 1
p
0@ X
I2Gs[S]

kgkp
0

Lp0(P I
s;0[r]I)

1A 1
p0

� CN2
�r(N�n�1

p )2�s"p;n kfkLp(S) kgkLp0 (Rn) :
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Norm estimate

We can extend this inner product estimate to a norm estimate by duality. Choose an appropriate function
gs with kgskLp0 (Rn) = 1 and


TSQ
n�1;�
s f; gs

�
=
TSQn�1;�s f


Lp

0B@ [
I2Gs[S]

8><>:T Is [
[
r�0

P I
s [r]

9>=>;
1CA
;

and then with N > n�1
p and p > 2n

n�1 , sum in r and s to obtain

1X
s=1

TSQn�1;�s f

Lp(A+(0;22s))

�
1X
s=1

TSQn�1;�s f

Lp

0B@ [
I2Gs[S]

8><>:T Is [
[
r�0

P I
s [r]

9>=>;
1CA

=
1X
s=1

��
TSQn�1;�s f; gs
��� � 1X

s=1

1X
r=0

CN2
�r(N�n�1

p )2�s"p;n kfkLp(S) kgskLp0 (Rn) . kfkLp(S) ;

which is (9.18).

9.2.2. The case w = s. In this case we need to take expectation. Since each �xed cube J in the upper
quarter annulus A+ (0; 2s) belongs to the truncated pipe P Is;s � P Is \LIs for essentially all I 2 Gs [S], we get

Zas;s =

������
X

I2Gs[S]

X
J�P I

s;s

Z
Rn

�Z
S

e�i�(x)��AS�;�a f (x) dx

�
4n;�
J;� g (�) d�

������
�

������
X
Q0

D
TSAS�;�a Qn�1;�Q0;s;�

f;Pn;�;Q�
0 ;s;�

g
E������ .

X
Q0

TSAS�;�a Qn�1;�Q0;s;�
f

Lp

Pn;�;Q�
0 ;s;�

g

Lp0

;

where Qn�1Q0;s;�
=
P
I2Gs[Q0]

4n�1
I;� and Pn;�;Q�

0 ;s;�
=
P
J2Dk[Q�

0]
4n�1;�
I;� , and where Q0 ranges over a bounded

number of cubes in S with side length approximately 1. Also note that

AS�;�a Qn�1;�Q0;s;�
f = AS�;�a

X
I2Gs[Q0]

D
f; hn�1I;�

E
hn�1;�I;� = S�;�Aa

X
I2Gs[Q0]

D
f; hn�1I;�

E
(S�;�)

�1
hn�1;�I;�

= S�;�Aa
X

I2Gs[Q0]

D
f; hn�1I;�

E
hn�1I;� = S�;�AaQn�1Q0;s;�

=
X

I2Gs[Q0]

aI 4n�1;�
I;� :

Now we apply just part of the estimate (9.12) to obtain

E�
2Gs[S]

Zas;s .
�
E�
2Gs[S]

TSAS�;�a Qn�1;�Q0;s;�
f
p
Lp(B(0;2s))

� 1
p Pn;�Q�

0 ;s;�
Qn�1;�Q0;s;�

g

Lp0

. 2�"p;ns
Qn�1;�s f


Lp
kgkLp0 ;

for p > 2n
n�1 and m = s 2 N.

We do not need to make use of expanded pipes in this case, due to the small size of the ball B (0; 2s).

9.3. The general case 0 � w � s via square functions. In this subsection we prove the average norm
estimate for each s 2 N,

(9.24) E�
2G[S]

TSAS�;�a Qn�1;�s f

Lp(B(0;22s))

. 2�"n;ps kfkpLp ; for p >
2n

n� 1 :

It will be convenient to pass back and forth between average norm estimates and square function estimates
using Khintchine�s inequality. For example (9.24) is equivalent to,

(9.25)
S�T;sf

Lp(B(0;22s))
. 2�"n;ps kfkLp ; for p >

2n

n� 1 ;

where

(9.26) S�T;sf �

0@ X
I2Gs[S]

���TS 4n�1;�
I;� f

���2
1A 1

2
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is the square function associated with the random decomposition

TSAS�;�a Qn�1;�s f =
X

I2Gs[S]

aITSAS�;�a 4n�1;�
I;� f =

X
I2Gs[S]

aITS 4n�1;�
I;� f; a 2 2G[S]:

Finally, it su¢ ces to prove the following inequality for each 0 � w � s,

(9.27)
S�T;sf

Lp(A+(0;22s�w))
. 2�s"p;n kfkLp ;

with implied constant independent of s and w. Indeed, the case w = s, which is
S�T;sfp

Lp(B+(0;2s))
.

2�s"p;n kfkpLp , follows from applying Khinchine�s inequality to the model inequality (5.4), and now we �nish
the proof using the decomposition

B+
�
0; 22s

�
= B+ (0; 2

s) [
s�1[
w=0

A+
�
0; 22s�w

�
:

We will prove (9.27) in four steps, the �rst two being local estimates requiring probabilistic arguments,
and the second two being global estimates for expanded pipes that require deterministic arguments. The
probabilistic local estimates are used to control the sums over cubes I 2 Gs [K] which are close together,
while the global deterministic estimates are used to control the sums of cubes K 2 Gs�w [S] which are farther
apart.

9.3.1. Step 1: local probabilistic argument. Here we prove the local square function inequality,S�T;sQn�1;�K;s f
p
Lp(A+(0;22s�w))

. 2�s"p;n
Qn�1;�K;s f

p
Lp(S)

; for all K 2 Gs�w [S] ;

which by Khintchine�s inequality is equivalent to the local average expectation inequality,

E�
2G[S]

1X
s=1

TSAS�;�a Qn�1;�K;s f
p
Lp(B(0;22s�w))

. kfkpLp(S) ; for all K 2 Gs�w [S] :

Consider (I; J) 2 Rk;ws , i.e. I 2 Gs [S], ` (J) = 2k and J � P Is;w. Recall that T
I
s;w is the tube given by the

convex hull of the pipe P Is;w. For 0 < w < s, these tubes have bounded overlap approximately 2w(n�1). Thus

for each K 2 Gs�w we can de�ne a tube TK;\s;w �
[

I2Gs[K]

T Is;w consisting of all the tubes T
I
s;w with I � K. Note

that each tube T Is;w has dimensions C12
s � 22s�w, and due to the 2w(n�1) overlap, each of the tubes TK;\s;w

also has dimensions C22s � 22s�w, but with a larger constant C2. Finally, note that the union
[

K2Gs�w

TK;\s;w

of these tubes covers the upper quarter annulus A+ (0; 2s� w) with bounded overlap. Indeed, the tubes TK;\s;w

are comparable to any of the tubes T Is;w with I � K, and it is this last property that motivated grouping
the I 0s into cubes K and de�ning TK;\s;w as we did above.
We begin with the following more elementary local average inequality for 0 � w � s, in which we restrict

the integration over Rn to the tubes TK;\s;w ,

(9.28) E�
2Gs[S]

TSAS�;�a Qn�1;�K;s f
p
Lp(TK;\

s;w )
. 2�(2s�w)p"p;n

Qn�1;�K;s f
p
Lp(S)

; for p <
2n

n� 1 :

To prove this, we consider the L2 and average L4 bounds separately and then interpolate.

Step 1(a): local L2 estimate

We �rst compute the norm of �2s from L2 (K) to L2
�
TK;\s;w

�
for functions f of the form f = Qn�1K;s f =P

I2Gs[K]4
n�1
I;� f and with �2sf � [f�;2s. For I0 2 Gs [K], whose normal is en, we will use the rectangu-

lar convolver 's;2s�w (z) that has dimensions 2
�s � 2w�2s, and we will multiply by a modulation m (z)

that translates the tube [�2s; 2s]n�1 �
�
�22s�w; 22s�w

�
to be positioned near TK;\s;w . For convenience we

momentarily set
 (z) � m (z)'s;2s�w (z) :
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We then have for f = Qn�1K;s f ,

k�2sfk2L2
�
jb j2�n� =

Z
Rn

���[f�;2s (�)���2 ���b (�)���2 d� = Z
Rn

\f�;2s �  (�) \f�;2s �  (�) d�

=
X

I;J2Gs[K]

Z
Rn

\f I�;2s �  (�) \fJ�;2s �  (�) d� =
X

I;J2Gs[K]

Z
S

f I�;2s �  (x)
�
fJ�;2s �  

�
(x) dx:

Note �rst that the supports of f I�;2s � and fJ�;2s � are essentially disjoint unless I � J . Next, if we de�ne

I�0 �
��
�2�s; 2�s

�n�1 � ��2w�2s; 2w�2s��+ en ;
and I� by rotation, then we have��f I�;2s �  (z)�� . ���DS�1�;�f; hn�1I;�

E��� 22s�w2sn�12 1I� (z) ;
since��f I�;2s �  �� � ��f I� �  �� .  df I�

d�n�1


1

�
1�(I)�n�1

�
� 's;2s�w (z) �

���DS�1�;�f; hn�1I;�

E��� 2sn�12 (density)1I� (z) ;

where the quantity density satis�es,

(density) 2�s(n�1)2w�2s = (density) jI�j =
1�(I)�n�1 = 2�s(n�1)

=) density =
2�s(n�1)

2�s(n�1)2w�2s
= 22s�w:

Altogether then, using jI�j = 2�s(n�1)2w�2s, we have for f = Qn�1K;s f

k�2sfk2L2
�
jb j2�n� .

X
I2Gs[K]

Z
Rn

��f I�;2s �  (�)��2 d�(9.29)

.
X

I2Gs[K]

Z
Rn

������DS�1�;�f; hn�1I;�

E��� 22s�w2sn�12 1I� (�)���2 d� . X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 �22s�w2sn�12 �2 jI�j
= 24s�2w2s(n�1)2�s(n�1)2w�2s

X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 = 22s�w X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 . 22s�w Qn�1K;s f
2
L2(S)

:

Step 1(b): local average L4 estimate

We run the argument in Subsubsection 5.2 up until the estimate for 
t = 
t [K], where 2�t � dist (I; J)
for I; J 2 Gs [K], i.e. 2�t . ` (K) = 2w�s or s � w � t � s. It is this restriction to large t that yields the
geometric gain needed for the average L4 estimate when I; J 2 Gs [K]. Then for s� w < t < s we have


t [K] .
X

I;J2Gs[K]: dist(I;J)�2�t
2�s(n�2)2t

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2
. 2�s(n�2)2t

X
I;J2Gs[S]: dist(I;J)�2�t

���D(S�;�)�1 f; hI;�E���4
. 2�s(n�2)2t2(s�t)(n�1)

X
I2Gs[S]

���D(S�;�)�1 f; hI;�E���4 = 2�t(n�2)2�s(n�2) Qn�1s f
4
L4(S)

;

which gives
sX

t=s�w
	t [K] .

sX
t=s�w


t [K] .
sX

t=s�w
2�t(n�2)2�s(n�2)

Qn�1K;s f
4
L4(S)

� 2�(s�w)(n�2)2�s(n�2)
Qn�1K;s f

4
L4(S)

= 2�(2s�w)(n�2)
Qn�1K;s f

4
L4(S)

:

Similarly we obtain

	 . 2�(2s�w)(n�2)
Qn�1K;s f

4
L4(S)

;
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and adding these results gives for f = Qn�1K;s f ,

(9.30) E�
2G

�2sAS�;�a f
4
L4(�n)

. 2�(2s�w)(n�2)
Qn�1K;s f

4
L4(S)

:

Step 1(c): local interpolation

Collecting the bounds (9.29) and (9.30) gives for f = Qn�1K;s f ,�2sAS�;�a Qn�1;�K;s f
2
L2
�
jb j2�n� . 2

2s�w
2

Qn�1K;s f
2
L2(K)

;

E�
2G

�2sAS�;�a Qn�1;�K;s f

L4(�n)

. 2�
2s�w
2

n�2
2

Qn�1K;s f
4
L4(S)

:

Now we claim that an application of the interpolation Lemma 31 yields,

(9.31) E�
2G

�2sAS�;�a Qn�1;�K;s f

Lp
�
jb j2�n� . 2�(2s�w)"

0
p;n

Qn�1K;s f

Lp(S)

; for p >
2n

n� 1 :

Indeed, the calculation at the end of the proof of Lemma 31 shows that if p > 2n
n�1 , then (with notation as

in that proof) � = 4
p � 1 and soh

2�
2s�w
2

n�2
2

i1�� h
2
2s�w
2

i�
= 2�

2s�w
2

n�2
2 2(

2s�w
2 + 2s�w

2
n�2
2 )� = 2�

2s�w
2

n�2
2 2(

2s�w
2

n
2 )� = 2�(2s�w)"

0
p;n ;

where

"0p;n � 1

2s� w

�
2s� w
2

n� 2
2

�
�
2s� w
2

n

2

��
4

p
� 1
��

=
n� 2
4

� n

4

�
4

p
� 1
�
=
n� 1
2

� n

p
=
n� 1
2p

�
p� 2n

n� 1

�
:

This completes our proof of (9.28).

9.3.2. Step 2: local expanded probabilistic argument. Now we turn to proving the expanded analogue of (9.28)
given by,

E�
2Gs[S]

TSAS�;�a Qn�1;�K;s f
p
Lp(PK

s;w[r])
. 2�rp

�
N�n�1

p0

�
2�(2s�w)p"p;n

Qn�1;�K;s f
p
Lp(S)

(9.32)

for all K 2 Gs�w [S] and p >
2n

n� 1 ;

where � > 0 and PKs;w [r] is the expanded pipe corresponding to the tube T
K
s;w. This is proved in the same

way as the case of the tube TK;\s;w in the previous subsubsection, except that we use the geometric decay in r
derived from integration by parts, to compensate the geometric growth in r that arises from the expanded
pipes.
We �rst de�ne V Ks;w to be the vertical cone that is the complement of the union over 0 � r � s of the

expanded tubes TK;\s;w (r) in the quarter annulus A+
�
0; 22s�w

�
, and set Vs �

s[
w=0

[
K2Gs�w[S]

V Ks;w. Note that

the cone Vs will be �thin� if the positive constant Cn in De�nition 44 is large. Now we repeat the above
proof of (9.28), but with expanded pipes PKs;w [r] in place of the tube T

K
s;w, to get (9.32). Indeed, the L

2 and
average L4 estimates (9.29) and (9.30) are now multiplied by an additional factor C�2�r� for some � > 0,
which percolates through the interpolation to give (9.32).
However, we must choose the constant Cn in De�nition 44 to be possibly even larger than it already is.

Namely, given a small positive constant " satisfying 0 < " < "p;n, choose Cn such that the vertical cone Vs
is so thin that the Direct Argument in Subsubsection 9.2.1 produces a bound that is C2"s times as large
as that obtained in Subsubsection 9.2.1,

(9.33) sup
a22Gs[S]

���DTSAS�;�a Qn�1;�s f;Pn;�Vs g
E��� . 2"s2�"0p;ns kfkLp kgkLp0 :

This bound will prove to be an acceptable estimate if we choose "0p;n > " > 0.
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Next we adapt the arguments surrounding (9.31) and (9.22) to conclude that

E�
2G[S]

TSAS�;�a Qn�1;�K;s f

Lp(PK

s;w[r])
. 2�"p;ns

@NQn�1;�K f

Lp[S]

; for K 2 Gs�w [K] and p >
2n

n� 1 :

Indeed, the following three steps are almost verbatim analogues of Steps 1(a), (b) and (c) above, and we
include the details only because of the importance of the estimates. We begin by noting that the analogue
of (9.21) in the case 0 � w � s is,

(9.34)

����Z e�i�(x)��Qn�1;�K;s;� f (x) dx

���� . CN2
�(r+s)N

Z ���@NQn�1;�K;s;� f (x)
��� dx; for � 2 PKs;w [r] :

Step 2(a): local expanded L2 estimate

We compute the norm of �2s from L2 (K) to L2
�
PKs;w [r]

�
for functions f of the form f = Qn�1K;s f =P

I2Gs[K]4
n�1
I;� f . For I0 2 Gs [K], whose normal is en, we now use the cylindrical convolver 'rs;2s�w (z)

that has outer dimensions 2�s�r � 2w�2s, and we will multiply by a modulation m (z) that translates the
pipe whose convex hull is the tube [�2s+r; 2s+r]n�1 �

�
�22s�w; 22s�w

�
to be positioned near PKs;w [r]. For

convenience we momentarily set

 (z) � m (z)'rs;2s�w (z) :

We then have for f = Qn�1K;s f ,

k�2sfk2L2
�
jb j2�n� =

Z
Rn

���[f�;2s (�)���2 ���b (�)���2 d� = Z
Rn

\f�;2s �  (�) \f�;2s �  (�) d�

=
X

I;J2Gs[K]

Z
Rn

\f I�;2s �  (�) \fJ�;2s �  (�) d� =
X

I;J2Gs[K]

Z
S

f I�;2s �  (x)
�
fJ�;2s �  

�
(x) dx:

The supports of f I�;2s �  and fJ�;2s �  are essentially disjoint unless I � J . Next, if we de�ne

I�0 [r] �
��
�2�s�r; 2�s�r

�n�1 � ��2w�2s; 2w�2s��+ en ;
and I� [r] by rotation, then we have

��f I�;2s �  (z)�� . 2�(s+r)N ���DS�1�;�f [N ]; hn�1I;�

E��� 22s�w2sn�12 1I�[r] (z) ;
since

��f I�;2s �  �� � ��f I� �  �� .  df I�
d�n�1


1

�
1�(I)�n�1

�
�'rs;2s�w (z) � 2�(s+r)N

���DS�1�;�f; hn�1I;�

E
2sN

��� 2sn�12 (density)1I�[r] (z) ;

upon applying (9.34) to

@N4n�1;�
I;� =

D
S�1�;�f; h

n�1
I;�

E
@Nhn�1;�I;� :

Here the quantity density satis�es,

(density) 2�(s+r)(n�1)2w�2s = (density) jI� [r]j =
1�(I�[r])�n�1 = 2�(s+r)(n�1)

=) density =
2�(s+r)(n�1)

2�(s+r)(n�1)2w�2s
= 22s�w:
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Altogether then, using jI� [r]j = 2�(s+r)(n�1)2w�2s, we have for f = Qn�1K;s f

k�2sfk2L2
�
jb j2�n� .

X
I2Gs[K]

Z
Rn

��f I�;2s �  (�)��2 d�
. 2�2rN

X
I2Gs[K]

Z
Rn

������DS�1�;�f; hn�1I;�

E��� 22s�w2(s+r)n�12 1I�[r] (�)���2 d�
. 2�2rN

X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 �22s�w2(s+r)n�12 �2 jI�j
= 2�2rN24s�2w2(s+r)(n�1)2�s(n�1)2w�2s

X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2
= 2�2rN22s�w

X
I2Gs[K]

���2�sN DS�1�;�f; hn�1I;�

E���2 . 2�2rN22s�w Qn�1K;s f
2
L2(S)

:

Step 2(b): local average expanded L4 estimate

We begin by using (9.34) to estimate the L4
�
PKs;w [r]

�
norm of �2sf when f = QK;sf :

k�2sfk4L4(PK
s;w[r])

=

Z
PK
s;w[r]

���[f�;2s (�)���4 d� = Z
PK
s;w[r]

������
X

I2Gs[K]

[f I�;2s (�)

������
4

d�

. 2�4(r+s)N
Z
PK
s;w[r]

������
X

I2Gs[K]

\@Nf I�;2s (�)

������
4

d� = 2�4(r+s)N
Z
PK
s;w[r]

������
X

I;J2Gs[K]

\@Nf I�;2s (�) \@NfJ�;2s (�)

������
2

d�

= 2�4(r+s)N
Z
PK
s;w[r]

������
X

I;J2Gs[K]

\@Nf I�;2s � @NfJ�;2s (�)

������
2

d�:

Then we run the argument in Subsubsection 5.2 with this estimate up until the estimate for 
t = 
t [K],
where 2�t � dist (I; J) for I; J 2 Gs [K], i.e. 2�t . ` (K) = 2w�s or s� w � t � s. Then for s� w < t < s
we have


t [K] . 2�4rN
X

I;J2Gs[K]: dist(I;J)�2�t
2�s(n�2)2t

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2
. 2�4rN2�s(n�2)2t

X
I;J2Gs[S]: dist(I;J)�2�t

���D(S�;�)�1 f; hI;�E���4
. 2�4rN2�s(n�2)2t2(s�t)(n�1)

X
I2Gs[S]

���D(S�;�)�1 f; hI;�E���4 = 2�4rN2�t(n�2)2�s(n�2) Qn�1s f
4
L4(S)

;

which gives
sX

t=s�w
	t [K] .

sX
t=s�w


t [K] . 2�4rN
sX

t=s�w
2�t(n�2)2�s(n�2)

Qn�1K;s f
4
L4(S)

� 2�4rN2�(s�w)(n�2)2�s(n�2)
Qn�1K;s f

4
L4(S)

= 2�4rN2�(2s�w)(n�2)
Qn�1K;s f

4
L4(S)

:

Similarly we obtain

	 . 2�4rN2�(2s�w)(n�2)
Qn�1K;s f

4
L4(S)

;

and adding these results gives for f = Qn�1K;s f ,

E�
2G

�2sAS�;�a f
4
L4(�n)

. 2�4rN2�(2s�w)(n�2)
Qn�1K;s f

4
L4(S)

:
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Step 2(c): local expanded interpolation

Collecting the bounds (9.29) and (9.30) gives for f = Qn�1K;s f ,�2sAS�;�a Qn�1;�K;s f
2
L2
�
jb j2�n� . 2�2rN2

2s�w
2

Qn�1K;s f
2
L2(K)

;

E�
2G

�2sAS�;�a Qn�1;�K;s f

L4(�n)

. 2�4rN2�
2s�w
2

n�2
2

Qn�1K;s f
4
L4(S)

:

Now we claim that an application of the interpolation Lemma 31 yields,

E�
2G

�2sAS�;�a Qn�1;�K;s f

Lp
�
jb j2�n� . 2�rN2�(2s�w)"

0
p;n

Qn�1K;s f

Lp(S)

:

Indeed, the calculation at the end of the proof of Lemma 31 shows that if p > 2n
n�1 , then (with notation as

in that proof) � = 4
p � 1 and soh
2�rN2�

2s�w
2

n�2
2

i1�� h
2�rN2

2s�w
2

i�
= 2�rN2�

2s�w
2

n�2
2 2(

2s�w
2 + 2s�w

2
n�2
2 )�

= 2�rN2�
2s�w
2

n�2
2 2(

2s�w
2

n
2 )� = 2�rN2�(2s�w)"

0
p;n ;

where

"0p;n � 1

2s� w

�
2s� w
2

n� 2
2

�
�
2s� w
2

n

2

��
4

p
� 1
��

=
n� 2
4

� n

4

�
4

p
� 1
�
=
n� 1
2

� n

p
=
n� 1
2p

�
p� 2n

n� 1

�
:

This completes our proof of (9.32).

9.3.3. Step 3: local deterministic argument. We use Khintchine�s inequality to recast (9.28) as a local square
function estimate,

(9.35)
SK;�T;s

p
Lp(TK;\

s;w )
. 2�(2s�w)p"p;n

Qn�1;�K;s f
p
Lp(S)

; for p >
2n

n� 1 ;

where the local square function SK;�T;s is given by,

(9.36) SK;�T;s f � S
�
T;sQ

n�1;�
K;s f =

0@ X
I2Gs[K]

���TS 4n�1;�
I;� f

���2
1A 1

2

;

and where S�T;s is de�ned in (9.26). Note also that,

(9.37)
���S�T;sf ���2 � X

I2Gs[S]

���TS 4n�1;�
I;� f

���2 = X
K2Gs�w[S]

X
I2Gs[K]

���TS 4n�1;�
I;� f

���2 = X
K2Gs�w[I]

���SK;�T;s f
���2 :

We have A+
�
0; 22s�w

�
�

[
K2Gs�w[S]

TK;\s;w � A�+
�
0; 22s�w

�
, where the union has bounded overlap Clap,

and A�+
�
0; 22s�w

�
is a �xed expansion of the quarter annulus A+

�
0; 22s�w

�
. Let g 2 Lp

0 �
A+
�
0; 22s�w

��
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with kgkLp0 (A+(0;22s�w))
= 1. Then we haveX

K2Gs�w[S]

Z
TK;\
s;w

���SK;�T;s f
��� g � X

K2Gs�w[S]

SK;�T;s f

Lp(TK;\

s;w )
kgkLp0(TK;\

s;w )

�

0@ X
K2Gs�w[S]

SK;�T;s f
p
Lp(TK;\

s;w )

1A 1
p
0@ X
K2Gs�w[S]

kgkp
0

Lp0(TK;\
s;w )

1A 1
p0

.

0@ X
K2Gs�w[S]

2�(2s�w)p"p;n
Qn�1;�K;s f

p
Lp(S)

1A 1
p �

Clap kgkp
0

Lp0(A�
+(0;2

2s�w))

� 1
p0

. C
1
p0

lap2
�(2s�w)"p;n

Qn�1;�s f

Lp(S)

kgkLp0(A�
+(0;2

2s�w)) � 2
�(2s�w)"p;n

Qn�1;�s f

Lp(S)

:

9.3.4. Step 4: expanded deterministic argument. From (9.32) we have the estimate

E�
2Gs[S]

TSAS�;�a Qn�1;�K;s f
p
Lp(PK

s;w[r])
. 2�rp

�
N�n�1

p0

�
2�(2s�w)p"p;n

Qn�1;�K;s f
p
Lp(S)

;

where PK;\s;w [r] is the expanded pipe corresponding to the tube T
K;\
s;w . By Khintchine�s inequality this is

equivalent to the square function estimate,

(9.38)
SK;�T;s f

p
Lp(PK

s;w[r])
. 2�rp

�
N�n�1

p0

�
2�(2s�w)p"p;n

Qn�1;�K;s f
p
Lp(S)

; for p >
2n

n� 1 ;

where SK;�T;s f is the local square function de�ned in (9.36). The only di¤erence between the left hand sides of
the inequalities (9.35) and (9.38), is that the second inequality is integrated over the expanded pipe PKs;w [r]
instead of the tube TK;\s;w . As a consequence, we obtain by following the previous argument that,X

K2Gs�w[S]

Z
PK
s;w[r]

���SK;�T;s f
��� g � X

K2Gs�w[S]

SK;�T;s f

Lp(PK

s;w[r])
kgkLp0(PK

s;w[r])

�

0@ X
K2Gs�w[S]

SK;�T;s f
p
Lp(PK

s;w[r])

1A 1
p
0@ X
K2Gs�w[S]

kgkp
0

Lp0(PK
s;w[r])

1A 1
p0

.

0@ X
K2Gs�w[S]

2
�rp

�
N�n�1

p0

�
2�(2s�w)p"p;n

Qn�1;�K;s f
p
Lp(S)

1A 1
p �

Clap2
r(n�1) kgkp

0

Lp0(A�
+(0;2

2s�w))

� 1
p0

. C
1
p0

lap2
�r
�
N�2n�1

p0

�
2�(2s�w)"p;n

Qn�1;�s f

Lp(S)

kgkLp0(A�
+(0;2

2s�w)) � 2
�r�2�(2s�w)"p;n

Qn�1;�s f

Lp(S)

;

where � = N � 2n�1p0 > 0 for N chosen su¢ ciently large.
Now sum in r to obtainZ

A+(0;22s�w)

0@ X
K2Gs�w[S]

���SK;�T;s f
���
1A g .

X
K2Gs�w[S]

s�wX
r=0

Z
PK
s;w[r]

���SK;�T;s f
��� g = s�wX

r=0

X
K2Gs�w[S]

Z
PK
s;w[r]

���SK;�T;s f
��� g

.
s�wX
r=0

2�r�2�(2s�w)"p;n
Qn�1;�s f


Lp(S)

. 2�(2s�w)"p;n
Qn�1;�s f


Lp(S)

:

If we take the supremum over g as above, i.e. g 2 Lp
0 �
A+
�
0; 22s�w

��
with kgk

L(
p
2 )

0
(A+(0;22s�w))

= 1, we

obtain 
X

K2Gs�w[S]

���SK;�T;s f
���

Lp(A+(0;22s�w))

. 2�(2s�w)"p;n
Qn�1;�s f


Lp(S)

:
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Then we have from (9.37) that

S�T;sf
Lp(A+(0;22s�w))

=


0@ X
K2Gs�w[S]

���SK;�T;s f
���2
1A 1

2


Lp(A+(0;22s�w))

�


X

K2Gs�w[S]

���SK;�T;s f
���

Lp(A+(0;22s�w))

. 2�(2s�w)"p;n
Qn�1;�s f


Lp(S)

;

which gives (9.27) since 2�(2s�w)"p;n � 2�s"p;n for 0 � w � s.
This completes the proof of (9.24).

9.4. Wrapup. Combining all of the estimates in this section, and taking into account the change of para-
meters from m; d to w; r for the estimates with d < 0, we obtain the desired bound for the disjoint form,���Bupperdisjoint (f; g)

��� =

������
X
d�0

1X
m=1

X
k2Z

Bk;d;mdisjoint (f; g)

������ . kfkLp kgkLp0 ;
E�
2G

��Blowerdisjoint (f; g)
�� = E�

2G

�����X
d<0

1X
m=1

X
k2Z

Bk;d;mdisjoint (f; g)

����� . kfkLp kgkLp0 ;
where if (I; J) 2 Pk;dm and ` (I) = 2�s in the above sum, it is understood that �s � d <1.
More importantly, we also have the norm expectation (9.24),

E�
2G[S]

TSAS�;�a Qn�1;�s f

Lp(B(0;22s))

. 2�"n;ps kfkpLp ;

for p > 2n
n�1 , which will play a critical role in completing the proof of our main theorem in the next section.

10. Completion of the proof of the probabilisitic extension Theorem 2

Consider the norm

 \AS�;�a Qn�1;�s f�;2s


Lp
�
1RnnB(0;22s)�n

� for each �xed f 2 Lp, s 2 N and a 2 a, and

choose gf;s;a 2 Lp
0
(�n) such that

4J;�gf;s;a = 0 for J 2 D
�
B
�
0; 22s

��
;(10.1) \AS�;�a Qn�1;�s f�;2s


Lp
�
1RnnB(0;22s)�n

� =
��
TSAS�;�a

�
Qn�1;�s f

�
2s
; gf;s;a

��� and kgf;s;akLp0 (�n) = 1:
Since Blowerdisjoint

�
AS�;�a Qn�1;�s f; gf;s;a

�
vanishes by the assumption on the Alpert support of f in (10.1), we

have

E�
2G[S]

��
TSAS�;�a

�
Qn�1;�s f

�
2s
; gf;s;a

��� = E�
2Gs[S]

��
TSAS�;�a

�
Qn�1;�s f

�
2s
; gf;s;a

���
= E�

2Gs[S]

���Bbelow �TSAS�;�a

�
Qn�1;�s f

�
2s
; gf;s;a

�
+ Babove

�
TSAS�;�a

�
Qn�1;�s f

�
2s
; gf;s;a

�
+ Bupperdisjoint

�
TSAS�;�a

�
Qn�1;�s f

�
2s
; gf;s;a

����
. sup

a
2�"n;ps

AS�;�a Qn�1;�s f

Lp
kgf;s;akLp0 ;

from estimates proved in previous sections. Thus we conclude from this and (9.24) that

E�
2G[S]

TSAS�;�a Qn�1;�s f

Lp

. E�
2Gs[S]

 \AS�;�a Qn�1;�s f�;2s


Lp
�
1RnnB(0;22s)�n

� + E�2Gs[S]
 \AS�;�a Qn�1;�s f�;2s


Lp(B(0;22s))

= E�
2Gs[S]

��
TSAS�;�a

�
Qn�1;�s f

�
2s
; gf;s;a

���+ E�
2Gs[S]

 \AS�;�a f�;2s


Lp(B(0;22s))

. sup
a
2�"n;ps

AS�;�a Qn�1;�s f

Lp
kgf;s;akLp0 + 2

�"n;ps
Qn�1;�s f


Lp
� 2�"n;ps kfkLp ;
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since the multipliers AS�;�a and the pseudoprojection Qn�1;�s are both bounded on Lp by the square function
estimates (2.1). Finally we have

E�
2G[S]

TSAS�;�a f

Lp
= E�

2G[S]


1X
s=1

TSAS�;�a Qn�1;�s f


Lp

�
1X
s=1

E�
2G[S]

TSAS�;�a Qn�1;�s f

Lp
�

1X
s=1

2�"n;ps kfkLp . kfkLp :

This completes the proof of the probabilistic Fourier extension inequality in Theorem 2.

11. Concluding remarks

The two weight testing methods used in this paper might also be applicable to the following open proba-
bilistic problems:

(1) proving a probabilistic analogue of the Bochner-Riesz conjecture or even the stronger local smoothing
conjecture. In the context of the (nonprobabilistic) extension conjecture, see Sogge [Sog] for a proof
that local smoothing implies Bochner-Riesz, and Tao [Tao1] for a proof that Bochner-Riesz implies
Fourier restriction,

(2) replacing the sphere in Theorem 2 with any smooth surface of nonvanishing Gaussian curvature, and
possibly with appropriate smooth surfaces of �nite type (and with altered indices p),

(3) replacing the Fourier kernel e�ix�� in Theorem 2 with a more general kernel 
 (x; �),
(4) to multilinear probabilistic variants of the extension conjecture,
(5) deciding the endpoint case q = p0 n+1n�1 when 2 < p < 2n

n�1 in (1.2),
(6) and �nally to the much more challenging problem of boundedness of the maximal spherical partial

sum operator in a probabilistic sense.

The main open problem is of course the full Fourier extension conjecture (1.1).
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