A PROBABILISTIC ANALOGUE OF THE FOURIER EXTENSION CONJECTURE
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ABSTRACT. The Fourier extension conjecture in n dimensions is
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where Ts f (€) = [ e~ @) f (2)dx, S C Br_1 (0, %) CR" 1 & (2) = (m, \/1— \x|2) and A\, is Lebesgue
measure on R™. We prove that the following probabilistic analogue of the Fourier extension conjecture,
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The operator Egg averages over all involutive smooth Alpert multipliers

SN
A

holds if and only if p > %

A:"’" = Sk AaS;},, where £ > 3 and Aa multiplies the Alpert projections of f by sequences of +1
determined by a € 29 = {-1, l}g, where G is the grid of dyadic subcubes of S. The measure p is the
standard probability measure on 29, and Sk,n is the bounded invertible linear operator taking the Alpert
wavelet hr., to its smooth counterpart h?;m'

KM
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To prove this probabilistic analogue of the extension conjecture for the operators A;"™", we use frames

for LP consisting of smooth compactly supported Alpert wavelets having a large number x > % of vanishing
moments, along with sharp estimates on oscillatory integrals and probabilistic interpolation of L? and L*
estimates, as part of a two weight testing strategy using pigeonholing via the uncertainty principle to define
various subforms as pioneered by Nazarov, Treil and Volberg. It is crucial to use probability in our method
to obtain L* estimates with the correct decay when dealing with resonant subforms.
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1. INTRODUCTION

In this paper we consider a probabilistic analogue of the Fourier extension problem

(1) ([ 17t (é)quf); <o w@ran @)

for 1 < p,q < oo and where o,_; is surface measure on the sphere S*~! and F (u) = fR" e~ dy (x)
denotes the Fourier transform of the measure p.

1.1. The probabilistic extension problem. Let ® (z) = <:c, \/1-— |x2) € S"~1 be the standard para-

metization of the northern hemisphere of S"~!. Let S be a cube of side length 1 centered at the origin in
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R™~! and define

Tsf (€) /S DL () dr, € ERT,

so that Ts f = F®, (fA\n—1) where ®,v denotes the pushforward of a measure v under the map ®. Then the
Fourier extension problem is equivalent to boundedness of T,

HTSfHLtI()\n) <C ||f||LP(S’) :

Let{Ar.x};ep. rcg be the family of Alpert projections Ar, = Y cp | (f,h..) hf,. on L*(S) as in
Theorem 4. For a = {ar};.p € {1, —1}? and f € LP (S), define the involutive Alpert multiplier Ay by

Aaf = Za[ A[;R f,

IeD
which is ) ;. £ A, f for a choice of &+ determined by a.

Let Sy, be the bounded invertible linear map on L? given in Theorem 4, that takes Alpert wavelets h{.,
to their smooth counterparts h7;! = h{., * ¢, For a = {ar};.g € {1, —1}9 and f € L? (S), define the
involutive smooth Alpert multiplier

Agn,nf — Z + A?;n f
IED

by conjugating A, with the bounded invertible map S, ,, i.e.

Agmnf = Sn,nAaS;%f = Sm,n Z ar <S;}]f7 h1;1€> hI;n = Z ar <S;1]f7 hl;ra> h?;,{ = Z ar A?;,@ f

IeD 1€D IeD

2
Note that both A4, and Ai”‘" are involutions, A2 = (Ai"’") =Id.
Then we identify 29 and {1, —1}9 and equip 29 with the probability measure y that satisfies,

E
pa(B)=p({E|EC2'}) = ||2A| E C 2" with A C G finite,
where |F| denotes cardinality of a finite subset of G, and p ({E | E C 2A}) is the conditional probability of
E given that E C 2% (here 2% is a set of u-measure zero, and see e.g. [Hyt] for a construction of such a
measure p). We define the expectation operator Egg by

Big F = . F(a)du(a)
2

for F' a nonnegative function on 29 = {1, —1}g.
The probabilistic extension problem is to decide when the inequality,

La(An) N /29'

holds, which asks roughly speaking, if the extension inequality (1.1) holds when averaged over all involutive
smooth Alpert multipliers, which is of course a much weaker assertion than (1.1) itself. However, the
probabilistic analogue (1.2) fails for the same pairs (p, ¢) that (1.1) is currently known to fail for.

Finally, we point out that (1.2) is equivalent to the following formulation, not explicitly used in this paper,
expressed in terms of the Fourier transform on the sphere,

Ebs ( / U S ELI <s>\qd§>é <C ( /S gy T N o <z>>

(1.2) Bl

roAS

Sk,
TsAa 7| (@) < Ol s

1
P
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1.2. The main results and a brief history. The following Fourier extension conjecture arose from un-
published work of E. Stein in 1967, see e.g. [Ste2, see the Notes at the end of Chapter IX, p. 432, where

Stein proved the restriction conjecture for 1 < p < ﬁ] and [Ste],

1 1
» v 2
wy ([ rGeord) sc([ r@raa@) . <<,
R Sn—l -
which is of course equivalent to the bilinear form inequalities,
(F (Fon1) s S Wfllogon o 19wy
(Tsf,g) = Hf”Lp(s) ”gHLP'(]R") :

Our probabilistic analogue of (1.3) is the following conjecture.

Conjecture 1. For k > 5 and notation as above,
2
(1.4) B, &

T AR f|

) S Wfllpecsy > if and only if [ <ps o

LP (A n

Theorem 2 (Probabilistic extension conjecture). The probabilistic Fourier extension inequality (1.4) holds
i all dimensions n > 2.

Here the implied constant in < depends only on harmless quantities determined by context, which in the
display (1.4) are n and p.

Sections 2 through 10 are devoted to proving Theorem 2. Some concluding remarks are made in Section
11.

Acknowledgement 3. [ am indebted to Hong Wang and Ruiziang Zhang for pointing out serious gaps in
earlier versions of this paper.

There is a long history of progress on the Fourier extension conjecture in the past half century, and we
refer the reader to the excellent survey articles by Thomas Wolff [Wol], Terence Tao [Tao] and Betsy Stovall
[Sto] for this history up to 2019, as well as for connections with related conjectures and topics.

Somewhat imprecisely, and often ignoring p, the chronology of improvements for the extension conjecture
(1.1) in this period, and up to 2018 is as follows. Let p, = 2% =24 2.
2n

q > po, for n =2 (Fefferman 1970 [Fef]; Carleson, Sjolin 1972 [CaSj|; Zygmund 1974 [Zyg]),

2 2
¢ > Pt 7 (Stein, Tomas 1975 [Tom]), ¢ > p, + 1 " ¢cn (Bourgain 1991[Bou]),
n— n_
4 4
qg > 2+ P Z:;f 1 (Wolff 1995 [Wol2]), ¢>2+ R Z:;f L (Moyua, Vargas, Vega 1996 [MoVaVe]),
2
q > P, + m (Tao 2003 [Ta04]) i

qg > 2+ ifn=1; 2+ if n=2 (mod3, p=00), (Bourgain, Guth 2018 [BoGu]).

ifn=0; 2+

in — 3 n—1 2n —1
1
Ea

sion of positive results:

The following ( %)—rectangle for boundedness of the extension operator might help visualize this progres-

01 % * * * * * C * * *x *x *x *x *x (L1)

* Kk k k Kk k Kk k k k *k *x *x *k *x Kk

* K k k k Ak k *k k *k *x *x *k *x Kk

B % % * % % % * %

Sk ok ok ok ok %k

ok ok Kk Kk

Sk %

(0,0) (1,0)
n—1n-—1 1 n—1 11
A_<2n’2n>andB_<2’2n+2>andC (2’2)



PROBABILISTIC FOURIER EXTENSION
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The region marked with s is where boundedness of the extension operator (1.1) is known to fail, i.e. on and
n—1

above the line % = %=, and strictly above the Knapp line joining A to (1,0). The probabilistic analogue

(1.2) also fails for these pairs (%, %), as is shown below. The point B on the Knapp line is the Stein-

Tomas point, where boundedness is known from their 1975 result. Since the set of points (;1), é) for which
boundedness holds is both left-filled by embedding of LP spaces on the sphere, and convex by interpolation,
we see that as of 1975, the region consisting of the line joining B to (1,0), and everything to the left of it,

was known to be bounded for the extension operator. The point (ﬁ, ﬁ) was added by Tao [Tao4] in

2003, and points slightly better than (ﬁ, H%) were added by Bourgain and Guth [BoGu, BoGu] in 2018.
Note also that any progress along the open diagonal line joining (0,0) and A, such as showing that (%, %)

is bounded, yields boundedness for the convex hull of (%, %) and the line % = 0, as well as all points to the

left. Of course, even if the open diagonal segment joining (0,0) and A was known to be bounded, this would
still leave the open segment of the Knapp line joining A to B.

Our probabilistic theorem shows that the boundedness region for the probabilistic extension conjecture
includes all points not already eliminated for the extension conjecture, except possibly for the open segment
of the Knapp line joining A to B.

See also the more recent papers of Larry Guth [Gut] on polynomial partitioning, Ciprian Demeter [Dem]
on decouplings, Jonathan Hickman and Keith M. Rogers on polynomial Wolff axioms, Camil Muscaru and
Itamar Oliveira [MuOl] on parabolic restriction, Alex Iosevich and Ruixiang Zhang on weighted (lattice
point) restriction [IoZh], and Izabella Laba and Hong Wang on restriction to Cantor sets [LaWa], along with
the references given there and in [Wol], [Tao] and [Sto], to fundamental work done by additional authors to
those already mentioned, too numerous to recall here. In particular we mention that the best result to date
in R3 is p > 3+ 2, due to Hong Wang [Wan| using Kakeya and decoupling methods.

Moreover, the conditions g > p/ Z—ﬂ and % < q are necessary for the extension inequality (1.1) to hold,
see e.g. [Tao]. The same arguments show that these conditions on p and g are necessary for the probabilistic
analogue (1.2) to hold, upon considering individual smooth Alpert wavelets h}’;ﬁ (see below for definitions).
Since 0,_1 is a finite measure, embedding and interpolation with the trivial L' — L bound, together
with Theorem 2, prove the probabilistic extension inequality for this range of exponents, except for the
range g = p’ % and 1 <p < % Since the Stein Tomas result [Tom] captures the subcase of (1.1) when

1 < p < 2, this leaves only q = p’ Z—ﬂ and 2 < p < n2_”1 open in the probabilistic extension conjecture.

1.3. Quick overview of the proof and smooth Alpert wavelets. We begin with a short and informal
narrative.

Narrative: In the theory of nonhomogeneous harmonic analysis, and especially that of two weight
norm inequalities for the Hilbert transform, Nazarov, Treil and Volberg initiated the systematic
use of weighted Haar wavelets to analyze boundedness. The Hilbert transform has kernel ﬁ ,
and thus the action of a Haar wavelet against such a kernel typically has geometric decay away
from the origin, which permits ‘error’ off diagonal terms to be controlled. This two weight theory
has concentrated mainly on the Hilbert space case p = 2 in the past couple of decades, but more
recently LP estimates and square functions have attracted attention, especially with the recent work
of Hyténen and Vuorinen.

At this point it becomes conceivable that square function and two weight techniques might be
applicable to two weight LP norm inequalities for the Fourier transform - the most famous of which
is the restriction problem, equivalent to a norm inequality with measures do,_1 and dA,, in R™,

H]:(fanfl)HLP()\n) S ||fHLP(an_1)'

However, the kernel K (z,¢) = e "¢ of the Fourier transform F is purely oscillatory with no decay
at all, but this is offset by the curvature of the support of o, _1, that produces decay from the prin-
ciple of stationary phase. Moreover, the action of a Haar wavelet against this kernel will be small
if there is little variation of the kernel over the support of the wavelet (i.e. long wavelength), since
the wavelet has vanishing mean, but this gain is limited by the absence of higher order vanishing
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moments in a Haar wavelet.

Addressing this defect, Alpert constructed wavelets with similar properties to those of Haar, but
with additional vanishing moments that confer extra geometric gain. But even with Alpert wavelets
in place of Haar wavelets, there is no geometric gain when the wavelength of the kernel is small
compared to the size of the wavelet, due to the abrupt cutoffs in the dyadic construction of these
wavelets.

In this paper we construct smooth Alpert wavelets that permit geometric decay when the wavelengths
are small, i.e. when there is sufficient oscillation of the kernel over the support of the wavelet to
permit gain from integration by parts. Thus we will have gain except in the case of resonance, when
there is neither sufficient smoothness nor oscillation in the restriction of the kernel to the support
of either wavelet. In these resonant situations, we must appeal to probability in order to obtain the
desired L* bound needed for interpolation. The remainder of the paper holds without the interven-
tion of probability.

Our proof of the probabilistic Fourier extension conjecture uses some techniques arising in the two weight
testing theory of operator norms, [NTV4], [Vol], [LaSaShUr3|, [SaShUr7], [AlSaUr] and [SaWi], that were
in turn based on older work with roots in [FeSt], [DaJo], [Saw] and [Saw3], and followed by many other
papers as well, such as [Hyt], [LaWi], [SaShUr12] and [HyVu] to mention just a few'. One of the main
new ingredients used here is the construction of compactly supported smooth frames in LP with derivative
estimates adapted to the support, and as many vanishing moments as we wish. In fact, we will show that the
wavelets h‘;z in the following theorem, can be constructed in the spirit of symbol smoothing, as appropriate
convolutions of a certain approximate identity with the Alpert wavelets in [Alp], see also their weighted
versions in [RaSaWi].

For the proof of the probabilistic extension conjecture, we decompose the Fourier bilinear form

(F(fon) 0 = | Flfona) @g(@de= | F(®.F)(€)g(€)de,

R’n,
where f: f o ® is the pullback of f to S C R"™! into a finite sum of subforms

Bp(fg)= > <f(A’};;1’"f)7 7}229>Rn

(I,J)eP

where P is a collection of pairs of dyadic cubes I in R"~! and .J in R", and where A?;l’n and AT are
smooth Alpert pseudoprojections in R"~! and R™ respectively. This decomposition into subforms follows
that used by Nazarov, Treil and Volberg in the setting of singular integrals with weighted Haar wavelets,
but using the uncertainty principle to compare sizes of cubes here. There are four main subforms, the below
Bhelow (5 9), above Babove (f, 9), upper disjoint BirPei  (f, g) and lower disjoint Biﬁ‘gﬁ%ﬁm (f,g) subforms. The
first two subforms are handled by the classical methods of integration by parts and stationary phase, but
also use the smoothness and moment vanishing properties of the Alpert wavelets constructed in the next
theorem, while the third form also uses tangential integration by parts.

Finally, the fourth and most challenging subform, namely the lower disjoint form?, is handled using
properties of smooth Alpert wavelets with expectation taken over involutive smooth Alpert multipliers.
While the deterministic form estimates for the previous three forms imply corresponding deterministic norm
estimates by duality, this is no longer true for the probabilistic estimates we obtain, and it is important that

we obtain the stronger probabilistic norm estimates in these cases. In fact, we will obtain L? and average

LSome of the deepest results in testing theory, namely the good/bad machinery of Nazarov, Treil and Volberg in e.g. [NTV4],
the functional energy from [LaSaShUr3], the two weight inequalities for Poisson integrals from [Saw3], and the upside down
corona and recursion from Lacey [Lac], are not used here. The main reasons for this are the lack of ‘edge effects’ in smooth
Alpert wavelets, the lack of a paraproduct/stopping form decomposition, and of course that the measures are ‘nice’: surface
measure on the sphere and Lebesgue measure. On the other hand we make extensive use of pigeonholing into bilinear subforms
according to the uncertainty principle, and then applying square function techniques for Alpert frames.

2challenging because of the resonance that arises when the cubes I and J are appropriately positioned and sized, with the
consequence that neither integration by parts nor moment vanishing can be put to use. In fact, it was precisely this difficulty
that led to the serious gap in an earlier version v4 of this paper, and which was pointed out to the author by Hong Wang and
Ruixiang Zhang.
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L* norm estimates for smooth Alpert pseudoprojections (essentially because these spaces have the upper
majorant property), which can then be interpolated to obtain the required norm bounds. However, this
argument fails without expectation, and so fails to obtain the Fourier extension conjecture, whose attack
requires more sophisticated techniques. See Proposition 29, and Lemmas 30 and 31 below.

Here is the smooth compactly supported frame of wavelets for LP that we will use®.

Theorem 4. Let n,x € N with £ > 5, and n > 0 be sufficiently small depending on n and x. Then there

are a bounded invertible linear map S, : LP — LP (1 < p < 00) satisfying

(1~5) ”Id _Sm,7/||Lp_>Lp < Cn,pn s
3 ’ a a,n . . . .
and ‘wavelets {hf;ﬂ}leD, — and {hIW}IeD, wer, (with T, a finite index set depending only on k and
n), and corresponding projections and pseudoprojections {AI;,{}ED and {A?,K} defined by
Flrep

Drwf = 3 (Foh ) e and AL =37 ((Sen) ™ fihG, ) HEE

acl'y, a€l’y,
satisfying
(1) the standard properties,
_ a,n _
(16) le = 2] . =1

Supp hy,, C I and Supphy C (1+n)1,

1 m 1
< Cp (I)) — for all m > 0,

né( VT

/h?’;ﬁ (z)z%dz = /h‘}: (x)z%dz =0,  forall0<|a| <k.

mi a,n

oo

2) and for each a € Ty, the wavelets h®., and b5 are translations and L?-dilations of the unit wavelets
Ik Ik
héyy and bl respectively, where Qo = [0,1)" is the unit cube in R™,

a |Q0| a a, |Q0| a,
(17) hI;/{ = \/;hQO;HO(pI G/I’Ld hI;Z = WhQ(?mo(pI )

where vy : I — Qo 1s the affine map taking I one-to-one and onto Qo,
(3) and for all 1 < p < oo,

(L8) f= Y Ahf= Y AR, forfel’nl?

I€ED, a€cl, IeD, acl,
2 2
2 , N 2
> |t ~ > ]A?;Z ~\fllpe,  for feLPNIA,
I€eD, a€l, Lo () IeD, acl, Lo()
am P(p

(4) and for all I € D,
O () = hGl (2), forz e R"\ 'H, (Q),
where H,, (Q) is the n-halo of the skeleton of Q defined in (2.4) below.
(5) and finally, the unsmoothed operators Ar., are self-adjoint orthogonal projections®,

| A if I=J
(1.9) AV VA { 0 i T4
Remark 5. This theorem shows that the collection of ‘almost’ L? projections {A?’Z}I - s a ‘frame’
’ €D, a€l,

for the Banach space LP, 1 < p < co. The case n = 0 of (1.8) was obtained in the generality of doubling
measures (v in [SaWi].

3This particular theorem does not appear to be in the literature on frames.
1The operators A?,N are neither self-adjoint, projections nor orthogonal, but come close as we will see.



8 E. T. SAWYER
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in [LaWi], Michel Alexis and Ignacio Uriarte-Tuero for completing in our joint paper [AlSaUr] the work
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1.3.1. Organization of the paper. In the next section we will construct and prove the required properties
of smooth Alpert wavelets, and in Section 3 we introduce the extension operator and recall what we need
regarding stationary phase. This material is well-known but we repeat it here due to the precision of the
error estimates we need. In Section 4 we discuss the initial wavelet decompositions into various subforms and
describe the classical and well-known decay principles we use. Then in Section 5 we turn to the interpolation
of L? and L* estimates using probability. Then in Sections 6, 7 and 8 we will control the below, above and
upper disjoint forms respectively in the deterministic sense. Then in Section 9 we will use probability to
control the lower disjoint form by averaging over involutive smooth Alpert multipliers. Then we collect these
results to finish the proof of the probabilistic Fourier extension theorem in Section 10, and in Section 11 we
make some concluding comments.

1.4. The initial setup. Fix a small cube Sy in R”~! with side length a negative power of 2, and such that
there is a translation G of the standard grid on R”~! with the property that Sy € G, the grandparent 7T(g2)50

of Sy has the origin as a vertex, and Sy is an interior grandchild of S = 77(;)5’0, so that

1
(110) So, S € G with Sy C 55

In particular, we will use this construction later in the Standard Reduction 3 of the main bilinear inequality.
Then parameterize a patch of the sphere S*~! in the usual way, i.e. ®: S — S*! by

z=®(z) = (x,m - |x|2> = (;El,@,...,xnl,m - |x|2> .

Tsf (€) = F (@, [f () da]) = / DS (1) da,

s
so that the usual bilinear form associated to Ts can be decomposed by,

(Tsf,9) = <TS (Z A7;;1f>,ZA’;;Rg> = > <Ts ARLT, hg} :

Ieg JeD (I,J)eGXD

For f € L?(S), define

where {AT};H}JGD

projections for L? (S). Using rotation invariance, the Fourier extension conjecture is shown at the beginning
of Section 3 below, to be equivalent to boundedness of Tg, taken over a finite collection of such patches
D (9).

However, in order to carry out the standard two weight approach to bounding T, it will be necessary to
fix k € N, and instead expand the bilinear form (Tsf, g) in terms of the smooth k-Alpert decompositions of

f and g,

is an Alpert basis of projections for L% (R"), and {A?,;l} ; is an Alpert basis of
w ) e

-1, )
Tsfod= > (Ts A1 £,0509),
(I,J)EGXD
so as to exploit the cancellation inherent in the oscillatory kernel e ~*®(®)¢ of the operator Ts. Note that we
have written A’};l’" for A7, and Af! for AT here, and will continue to do so for the remainder of the
paper, except where otherwise noted.

Definition 7. A subset E of the unit sphere S*~! in R™ is said to be a ball if it is the intersection of the
sphere with a halfspace, and is said to be a pseudoball with constant Cpseudo, if there are concentric balls By
and By such that

(111) B C EC By and |B2| < Opseudo ‘Bl|,
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where |E| denotes surface measure on the sphere. We simply say that E is a pseudoball when Cpseudo
is understood from context, and we will sometimes define a ‘center’ of E to be the center (not uniquely
determined) of the balls By and B in (1.11).

Definition 8. Given a subset F' of Euclidean space R™, we define the tangential and radial ‘projections’ of
F, onto S™™! and [0, 00) respectively, by

o () = {

Then for Cpseudo chosen large enough in (1.11), the subsets ® (I) and miapn (J) of the sphere S"~! are
pseudoballs with constant Cpseudo, for all I € G and J € D. For E C S"~1!, we denote by —E the set
antipodal to E, i.e. —F = {( eSSl (e E} We now divide the collection of pairs (I,J) € G x D
according to the relative size and locatlon of their associated pseudoballs ® (I) and 7. (J), as dictated by
the uncertainty principle:

feF} and Traa (F) ={|¢] : £ € F}.

(1.12) GxDCP UP,
where P = Py U G P U R,
and P~ = {(I, —;;7:1(1, J) e P},
and where
Po = {(I,J)€GXD:Ttan (J) C P (Cpsendol)}
P = {(I, J)€GxD: 2" C S and Tean (J) C @ (2™ Cpseudol) \ @ (27”1(11> } , meN,
pseudo

R = {(ILJ)€GXD:®(I)C man (Cosondod)} -

Note that there is some bounded overlap among the pairs in this decomposition, but this overcounting is
inconsequential. On the other hand the cases where ., (J) N @ (2S5) = () are not included in the above
decomposition, but they are easily handled by the method used for the case m = s.

Finally we point out that it suffices to show that

S (TS a1 185290 S 1Sl gl
(I,J)eP

since (I,.J) € P~ if and only if (I, —.J) € P, and this amounts to replacing the kernel e **(®)¢ with the
kernel €?®(*)¢€  for which the estimates we obtain below are identical.

2. SMOOTH ALPERT FRAMES IN LP SPACES

Recall the Alpert projections {AQ;,@}er and corresponding wavelets {h“ of order k in R"

e }QGD, a€ly,
that were constructed in B. Alpert [Alp] - see also [RaSaWi] for an extension to doubling measures, and for
the terminology we use here. In fact, {h“Qm}aGF is an orthonormal basis for the finite dimensional vector
subspace of L? that consists of linear combinations of the indicators of the children € (Q) of @ multiplied by
polynomials of degree at most xk — 1, and such that the linear combinations have vanishing moments on the

cube @ up to order k — 1:

Lé;k(ﬂ)E = Z 1opo ik /f Zd,u (£)=0, for0</<k—land1<i<ng,,
Q'eC(Q)
where por.i () = Zaezizmgk—l ag/,ox® is a polynomial in R™ of degree |a| = a1 + ... + @, at most k — 1,
and o = a{'x5?..x," 7" Let dgye = dim L), (1) be the dimension of the finite dimensional linear space
L2 « (#). Moreover, for each a € I'y, we may assume the wavelet h¢,  is a translation and dilation of the
unlt wavelet h¢, ... where Qo = [0,1)" is the unit cube in R™.
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2.1. Alpert square functions. It is shown in [SaWi, Corollary 14], even for doubling measures, that despite
the failure of the x-Alpert expansion to be a martingale when x > 2, Burkholder’s proof of the martingale
transform theorem nevertheless carries over to prove, along with Khintchine’s inequality, that the LP norm
of the Alpert square function Sf of f is comparable to the LP norm of f, where

2

Sfay=| > |abf@| . zeRr™

QED, acl’y,

Of course Sf also depends on the grid D and &, but we suppress this in the notation. Moreover generally,
define the corona square function

Srf (@ <Z‘Pc“f¢f ])

FeF

where F is any subset of the grid D, and {Ci} per is the associated corona decomposition. The following
square function estimates were proved in [SaWi, Corollary 14].

Theorem 9 (Sawyer and Wick [SaWi]). Suppose p is a doubling measure on R™. Then for k € N and
1 < p < o0, we have

(2.1) 1S 1l oy + 155 1 gy < Comr 1L

2.2. Smoothing the Alpert wavelets. Given a small positive constant 77 > 0, define a smooth approximate
identity by ¢, (z) =n""¢ (%) where ¢ € C2° (Bgn (0,1)) has unit integral, [, ¢ () dz = 1, and vanishing

moments of positive order less than k, i.e.

it |y|=0

In fact we may take for ¢ (z) a product function ¢ (z) =[]\, ¢ (x;) where ¢ € C° ((—1,1)) satisfies

1 if =0 .
Yy —
(2.3) /gp(x)xd:c{o i 0<~y <k for 1 <i<n.

One way to construct a function ¢ satisfying (2.3) is to pick x € C° ((2,1)) with [ x (y)dy = 1, a large
N €N, and then for A = (A1,..., An) to define,

N

m=1

Then with the change of variable y = 2™z we have,

N

/ r)xVdr = Z Am / (2Mz) 2V dx = Z A2 ™ (v+1) /X(y) ydy = C, Z Amzfm(’)“Fl).
m=1 m=1

1 if v=0

0 if 0<~y<n we need to solve the linear system,

In order to achieve [ ¢, (z)z7dz = {

N N
1= Z An2” "™ and 0 = Z )\,”2*’”(7“), for 0 < v < &,

m=1 m=1
which in matrix form is

e =M. where M, = [27™]1<pen -
1<t<k
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We take N > k and observe that the square matrix M, = [2""4] 1<m<x has nonzero determinant, in fact
1<t<k

|det M| is bounded below by

. Indeed, the square Vandermonde matrix

V($):V($17x27 71‘n)E
Ln $% .Z‘Z
has determinant detV (z) = H (z; — ;). Thus with = (k) = (271,272,...,27%) € R*, we have
1<i<j<n
V(2 (k) = [27™]1<m<x = M, and so

<<k

—j — K _pE(r=1)

det M| = J[ [27-27= [ 2"=2"7=".
1<i<j<k 1<i<j<k

Thus we can find coefficients A = (A1, ..., Ay) such that ¢ = @, satisfies (2.3).
In the spirit of symbol smoothing for pseudodifferential operators, we define smooth Alpert ‘wavelets’ by

hGe = Mo * e@):
and we claim that hg., and h 1 coincide away from the n-neighbourhood (often referred to as a ‘halo’)
(2.4) H, (Q) = {z € R" : dist (z, Sg) < n},

of the skeleton Sg = UQ,€¢ »(Q) 8@ Note that away from the skeleton, the Alpert wavelet h¢,., restricts
to a polynomial of degree less than x on each dyadic child of Q). We now show the same for smooth Alpert
wavelets away from the halo of the skeleton.

Lemma 10. With notation as above and ¢ satisfying (2.2), we have

(2.5) G (X) =hg (x),  z€R"\H,(Q).
Proof. If mq (z) = 2% = 7" x5?...2%" is a multinomial, then
0 9) @)= Y (e [P0 )ay)a® =% = (0)
0<B<a
which shows that (2.5) holds. O

We also observe that for 0 < |§| < &,

/h%l( ) 2P dr = /%z(z) *th( dez //%e(z) (y) hy,s. (z—y) a’dx

/¢"2(1) (v) {/haQ;n (z—y) lﬁdﬂc} dy = /%e(l) (v) {/ ho. () (x + y)ﬁ da:} dy
[ i ) {0}ty =,

by translation invariance of Lebesgue measure.

2.3. The reproducing formula. For the purposes of this subsection we will change notation from that in
Theorem 4 in the introduction by defining

A?nfi Z <f7 h;Z*(AI;ﬂf)*QSnZ(I) .
acly,
Next, for any grid D, we wish to show that the linear map SE defined by

(2.6) SPf= Y (LR b= AL f, felr,

IeD, acl’y, IeD
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is bounded and invertible on LP, and that we have the reproducing formula,
f@y= > <(S,?,7,)71f7 ‘;m> e (@), forall f € LP L7,
I€D, acl,,

with convergence in the LP norm and almost everywhere. Since & is fixed throughout our arguments we will
often write SD instead of SKD in the sequel.

Proof of Theorem 4. Theorem 4 follows easily, together with what was proved just above, from the Theorem

11 below if we define the pseudoprojection A" I i Theorem 4 as the pseudoprojection A 1.+ in Theorem
11. |

We include arbitrary grids D in Theorem 11 since this may be useful in other contexts where probability
of grids plays a role, originating with the work of Nazarov, Treil and Volberg, see e.g. [NTV4] and [Vol], and
references given there.

Theorem 11. Let n > 2 and k € N with k > 5. Then there is ny > 0 depending on n and k such that
for all 0 < n < gy, and for all grids D in R™, and all 1 < p < 00, there is a bounded invertible operator

SD S,?n on LP, and a positive constant Cy, p n, such that the collection of functions {h‘;;Z}IED wer 8 a

, . 5
Cpnn-frame for LP, by which we mean”,

(2.7) flx) = Z &;};Kf (), for a.e. x € R", and for all f € LP,
I€eD, acl’,
~ —1 a
where A;]mf = Z <(SZ])) fs }lm> hI;Z ,
a€cl’y,

and with convergence of the sum in both the LP norm and almost everywhere, and

Il < (Z\ﬁ’}mﬁ) ( a7, \) < Cpman Il
pyman IeD

Lp Lr
for all f € LP.

Notation 12. We will often drop the index a parameterized by the finite set Ty, as it plays no essential role
in most of what follows, and it will be understood that when we write

A?Q;nf <fv hQ ’i> Q3K
we actually mean the Alpert pseudoprojection
bud = D (f iy B,
acl'y,

Now we turn to two propositions that we will use in the proof of Theorem 11.
Proposition 13. For k> 5 and 1 > 0 sufficiently small, we have
ISPfl o = fllpe » for fE€LPNL? and 1 <p < co.

Proposition 14. For x> 5 and 1 > 0 sufficiently small, we have

H(Snp)*fH ~ |l for fe LPNL? and 1 < p < oo.
Lr

To prove these propositions, we will need some estimates on the inner products <h717;r»’ hQ;K> where one
wavelet is smooth and the other is not. Fix a dyadic grid D. We say that dyadic cubes @1 and Q2 are
siblings if £(Q1) = £€(Q2), Q1N Q2 =0 and Q1 N Q2 # 0, and we say they are dyadic siblings if in addition
they have a common dyadic parent, i.e. 7p@1 = 7pQ2. Finally, we define Car (Q) to be the set of I € D
with £(I) < £(Q) such that I and @ share a face. We refer to these cubes I as Carleson cubes of @), and
note they can be either outside @ or inside (). Finally, we may assume without loss of generality that n is a
negative integer power of 2.

5See [AlLuSa] and [CaHaLa] for more detail on frames in LP spaces.
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Lemma 15. Suppose s €N, 0 <n=2"% <1, and I,Q € D, where D is a grid in R™. Then we have

’<h22;mh62m> ~ 1 and ‘<h22;th’?“> <n,  forQ and Q' siblings,

)\ *?
(Motan)| 5 n(5gy) . fricca@.

L@\
< Ith;n> hS 17(8(([))) , for@Q e Car(I) and £(Q) > nt(I),

1 (0(Q)\""*

(Motan)] 5 o (7)) T+ fort@=atm ad @iy m 0.
<h?;th?’$> = 0, in all other cases.

Proof. Fix a grid D, and take 0 < < 1. We have

<hg;m h’Q?"i> = <hQ§’i7 hQ§K> + <hg;/{ - hQ?'{’ hQ§’1> =1+ /}:l @ (hgg;n - h’Qm) (1’) hQ?’i (fE) dl’,
n

where

[ (b= how) @) gy () ds
Hy(Q)

Next we note that if I is a dyadic cube and @ € Car (I), then Q N'H,, (I) # 0 and <h}7;ﬁ, hQ;n> # 0 where
n = 2"% imply that Supp hg.x = Q C H,, (I). If Q C H,, (I), then we have

<h717;m hQ;~> = / 1Qh}];n (2) hgi (z) dz = / (hI;H * d)nf(l)) () hgs (z) dz
Ho (1) QOH, (1)

/Qﬂm 0 { /I hiw (y) Snecry (2 = y) dy} hQue (v) dz = /I hiy (y) { /Q ey P @ = W) b @) d:c} dy

r—1
/ h/I;fi (y) {/ [¢7}K(I) Z T — CQ ! ¢7/Z(I) (CQ - y)] h’Q;fi (‘T) dm} dy
In2n0(1)Q QNHy (1) j=0

S Hh‘n e h’QW

o HhQ;NHOO |H77 (Q)| 5

< Nhrell, | (V56 V¥ gl / / dady
H( 77 I))H B(cq,nt(I)) JQNH, (1)
< 1961l ( ! )Wu@" 1B (cqunt (D)]1Q N Hy (1)] < — (“Q))M
N co,n , < — (=% ,
m (1) Q[ ' =\ (1)
since [nreell oo € /7 Ihoulle S /7 and | V5o | <1970l () -

If Q € Car () and £(Q) > nf( ), then we have the trivial estimate

(4. 000)| Sminei@r™ i =0 (58)

1]lQ (1)
On the other hand, if I € Car (Q), we claim that

o s0(8)"

Indeed, this is clear if QN I = @ since then ’<h}’m, th> <y|1| /[ while if Q' € €p (I) s the child

-1

[NE

containing I, and if ¢ (z — ¢¢) is the polynomial whose restriction to Q" is (1 hg;x) (), then <h7}m, <,0> =0

and so s
(| =100 = (Y.
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We will also need the following consequence of the Marcinkiewicz interpolation theorem.

Lemma 16. For 1 <p < oo and k € N, we have

1

2\ 3
Z <|<f’hl’“‘>1H () (z )> < G | fll o

reo \ H[? 3
1 .
oy o p>2
where y,, = 3 if p=2
p(p?)_p) if 1l<p<2

Proof. Define the square function R,, by

Rof (z) = Z (Wlmm(n (x)) .

rep \ ]2

Using 14, (1) (z) S M11n3, (1) (%), the Fefferman-Stein vector valued maximal inequality [FeSt] yields,
1

2 2\ !
Z (WLMHIHvy(I)( )) /S Z (WM]-INH"(I) (1’))

I€D |1]2 I€D |1]2

Lr Lr
1

2\ 2
Z <|<ﬁw1m?{n(1)( )) =Ryf @ -

rep \ [

A

P
Now we note that

2
hrx
IRufle < Z(Wn)

e 1112
Lr
= (Z (Amf)2> = Rfllp» = 1l
IeD o
and
Jhi Jhrx Sh
IRy fll7 = /Z(Wlmm(n ) df'f—/ > i = 1S 17 >|1mHn(1) (@) Lo, (1) (2) do
I€D |1]? 1,I'eD |I| TEE
h K 7h K 7h K 7h 'K
I.IeD 12 1|2 rrep  MI? [1']?
7h’ Ku‘ 7h Ii
- /Z< Worelly ) dw—n/Z‘f 103 (@) de =0 3 10 b P =112
IeD |I| IeD IeD

Thus the (linearizable) sublinear operator R,, maps L? — L? with bound B, = 77%, and maps L9 — L9 with
bound B, = C, , for 1 < g < oo and ¢ # 2.

In the case p > 2, let ¢ = 2p. Then by the scaled Marcinkiewicz theorem applied to R, with exponents 2
and g = 2p, see e.g. [Tao2, Remark 29], we have

1R fl e < CH 321 03210 = CN 772(1 % (C 2p)9 = n,pnﬁ,

p—2
" / =1 1 _1-6 0 : _
with Cy, , = Cy). ( n,zp) , since = 5= + 5 implies 1 — 0 =

p—1°
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In the case 1 < p < 2, take ¢ = HTP and apply the scaled Marcinkiewicz theorem to R, with exponents 2

and ¢ = 1# to obtain

0 1
1" 1-0 o 27/ Y ] / o P
||R7If||[,p < Cn,pBQ B% - Cn,p772( ) (CH’HTP) - n,pnp(?’ P,

0
with G, , = Cy/ , (C?’I 1?,) ;since & = 5= + T implies 1 — 0 = &==. O
2.3.1. Injectivity. We can now prove Proposition 13.

Proof of Proposition 13. We have

Svll)f = Z AQinSnf = Z (Snf, hqin) hauw = Z <Z (fshisw) h?;th;m> hoiw = Z (fshisw) <h?;th;H> hqis

QED QeD QeD \IeD Q,IeD

and by the square function estimate (2.1),

1 1
3 2\ 2
HSUDJCHLP ~ Z |<S7]fa hQ;K> hQ;n|2 = Z Z <fa hI;H> <h?;57hQ;'€> h’Q;"i
QED Q€ED |I€ED
Lp p
1 1
bl 2 2
2 5 2
~ Z ‘<f7 hQ;N> <h%;m hQ;n> |hQ;~ +0 Z Z <f7 hl;n> <h?;w hQ;H> |hQ;F~|
Q€D QEeD |IeD: 1£Q
Lr Lp
P 2 3
1 1 ,
~ > I b)) @162 +0 > 1l > (b <h}';th;n> 1q ;
QeD QeD IeD: I1#Q
Lr Lp
where for some ¢, > 0,
1P 1P
1 2 2
2 2
ST (f hou)] oo = D2 12w > e f15s -
QeD e QeD Lo

Thus we have for each @ € D,
Z <fa hI> <h?7hQ> = Z <f>h1> <h?,hQ>+ Z <f7h1> <h717ahQ>

1€D: 1£Q 1€D: £(1)<(Q) 1€D: £(1)>£(Q)
IeCar(Q) QﬂHg(I)#(Z)

+ > (f,hr) (BT he) -
1€D: £(I)24(Q)=nL(I)
QeCar(I)

As a consequence of the estimates in Lemma 15, we have for each Q € D,

Z > hrie) <h?“¢”’hQ> S Z [(fs hie)l (5((3))3 M Z I(f, h[;n>|77i" (i((%))wg

IeD: I#£Q I€D: 0(I)<U(Q) IeD: £(Q)<ne(I)
IeCar(Q) QNHy (D0

' S e (Bohe)
IeD: £(1)>4(Q)>ne(I)
QeCar(I)

A +B(@Q)+C(Q).
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Altogether we have

1

2 z 1
1 2
(2.8) Sl X b (Wehen)| 10| | S| X gA@ 10
QeD 1€D: I£Q QeD
Lr Lr
3 . 3
| Z @ I\ ¢ @
QeD QeD
Lr Lp
We now claim that
2 3
(2.9 S| X b (Mhan)| 10| | St (0w L) 16l
QeD IeD: T#Q

Lr

With this established, and since £ > 5, we obtain
2\ 2
1 c
> |Q| S (fohiw) (W haun ) < Oy (logz ) 1l < 2SI
QeD 1€D: I£Q
Lr

with n > 0 sufficiently small. This then gives

C, C
Collflln 2 1521 0 2 oAl = Z 1710 = 2 W fll o

which completes the proof of Proposition 13 modulo (2.9).

We prove (2.9) by estimating each of the three terms on the right hand side of (2.8) separately, beginning
with the term involving A (Q).

Case A (Q): For each Q € D, wehavefor 0 <e <1l and 0 <y <n—e¢,

Q=0 X (i) X X Wiz

I€D: £(I)<L(Q) t=1reD: ¢(I)=2"44(Q)

IeCar(Q) IeCar(Q)
SDY S [k fartma =gy 2t S 2Rl
t=1 | 1eD: ¢(I)=2"1(Q) t=1 IeD: ¢(I)=2"t0(Q)
I€Car(Q) I€Car(Q)
S t(n—e— S —t 2 2~ (n=e) —t 2
<7 22 (n=e=7) Z Z 277 [(f, hr) " =1 P e C——) Z Z 27 [{f b)) |
t=1 t=1 [eD: £(I)=2""14(Q) t=11eD: L(I)=2""4(Q)
IeCar(Q) I€Car(Q)
and so

AQ=1 Y |<f,h1;n>|(f((3))2§n SO 2t |(f by

IeD: £(1)<L(Q) t=11eD: ¢(I)=2"t(Q)
IeCar(Q) IeCar(Q)
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if we take v = n — 2¢. It follows that

=

<1

= || UL RRP Y > 2721,

IeD t=1 1l QeD: £(I)=2"10(Q)
IeCar(Q)

L
IeD I
3
h 2-2¢
Son < f’|]I|K (M1,)*"= )
IeD I IeD
(2] :
1
5 n < . K 11) zn”f”Lpa
IeD o
provided 1 < r = ﬁ = ﬁ < p because since
> 2—2¢
2272t77,+25t12t1 5 (M]-I)2 5
t=1

where the inequality follows from

Z| (f hr)[? Z|2t[| 2~ Hn2e) 12t1> =7 <

1

s

Z ﬁA (Q)2 1Q S n Z |Q‘ Z Z 2—75(71—25) |<f7 hl;n)‘Q 1Q

QED t=11eD: ¢(I)=2""4(Q)
Ly IeCar(Q)

1

2

Lp

Z I b)) | hIn 22 2tn+2ety t1>
€D

[V

Lp

= (M7‘11)2 )

Z 27N 2], (2) & Z 2722 ey ge-n ()
t=1 t=1
= 227%”(1 )12t1 ot— 1] ZMll E)

~
Il
-

and the equality is by definition of M, and since 1; = (1;)",

<

(ML)*F = (M (11))

1oty g1y (x) = M1; (x)Q(lfi) ,

)2 = (M,1,)°.

=

1

Lp

Lp

17
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Case B (Q): Set n =277, Note that the function squared in the second norm in (2.8) then satisfies
2

L (Q)"?

QeD QeD 1€D: £(Q)<ne(I)
QNHy (1)#0

_ @ k+3 E(Q) r+5
- 2k Z |Q| Z <fah1;f”v>|<fahf’;n>|< (I)) <€(I’)> 1Q (1‘)

T Gep Ml 1ep: 4Q<nu(n) rep: w@y<n(r)
QﬁHg(I)?ﬁ@ QﬂHg( ) £0

2

n
2

1 1 et 2K
- 1ls v |<f,hm>||<f,hm>|(w) Y Q%10 @)

2K
n I,I'eD and ICI’ QED: £(Q)<nL(I)
QﬁH%(I);ﬂﬁ

1 h h 1 H+%€ I 2K = 1 2—1‘,2;@
S Al I, >'(w>w>> 0*yY Y o ()27,

2K
n I,I'éD and ICI’ =B QeD: £(Q)=2""4(I)

Q
|

QN y (N0
where for ¢t > 8 and « € Ha (I), we have
> 1o (v) <1,
QeD: £(Q)=2"tu(I)
QMg (170
so that
> @St S Wl () e S e e b ) @
@’ o IR gy ey a0
QeD I,I’€D and ICI’ =B
Now recalling 27¢ = (%Q)) we have for t > f3,

~ tn :
#{QeD: dist(Q.01) > £(Q) =27(I) and @My (1) #0} is { RS 1555

Our blanket assumption that x > & shows that all of the geometric series appearing below are convergent.
Then we have

I} K I} 'K E " —t2kK
Z %‘B(Q)le(;E) § % Z |<f hI, >£||<f hi, >| (g((jl/))) 22 ng(I) (x)

QEDgoo0d rrepamarcr L) LI)?

|<f’h1§ﬁ>||<f7hl’;n>| B(I) ® 2_B2N
2 <€ )1

2 2 —2n Int (1)(%)
I,I'éD and ICI’ g([)gé(l/)Z _9-2 2

[Fs R | 1S, B (w) ) )
I,I'eng Icr E(I)%é(f’)% (I H

‘ 3
—

N

2K

3

A

(I) (z),

n
2

which in turn equals,

= |<fah1;n>| ’<f’h(7r(s)[);ﬁ> E(I) K
22 VI x| ((xO7) Ly, n) (2)

IeD s=1
ZZ |(/, hm )| ‘< ”(5)11 > 27" 19, (1) (2)
IeD s=1 |I| |m) 1]

(ZQ SK) 2 | f[]ﬁlémﬂ ‘<f (ﬂ(wl)m> Ly, (n) (2)

IeD aSIE
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which is at most

(§2_M>JZ<|<ﬁh?n>|>le |5 (18 Rons)

1
IeD ME IeD |7T(S)I‘2 IeD

2 2
1H,](7T<t>1) (z) ~ Z (W) 1y, (1) () -

1717

By Lemma 16 we thus have

1 1

2 2 2
) | <[> (WLmly, o @) < Coput ™ £ -
|Q| IeD MK

QeD
Lpr Lr

Case C (Q): We have,

2

Sl @ = Y (b (Hehon)| L@

QeD QeD I€D: ¢(1)>0(Q)>nk(I)
QeCar([)

N Z |Q| Z Z (f, hl%ﬁ> <h7I];th;n> <f7 hp, k) <hp th> 1g (z)

QeD IeD: £(I)26(Q)2nl(I) 1eD: ¢(I')>0(Q)>ne(I’
@eCar(l) EQE)Car((I’)) )
1
~ Z Ivall Z <f7 hI;n> <h}th;m> <fa hI’;n> <h}]l;,§7hQ;H> 1Q (l‘)

QeD @l II'eD: ICI’ and £(I)>£(Q)>nt(1")
QECar(I)NCar (1)

- Z |Q| Z (fyhr) (fohe) (B, hg) (R, hg) | 1g (o).
QeD 1,I'eD: ICI’
QGCar(I)ﬂCar(I')

(n)ZeQ)=ne(1)
We first compute the diagonal sum restricted to I = I'. Set
Ly (D) ={x el dist(z,H, () =2nl(I)}, for0<t<pB,

where we recall that n = 277, and note that the diagonal portion of the sum above equals

10@) = Y (b Y WIQ(@

Swl X P (W)

QeD IeD: QeCar([) IeD QeD: QeCar(I)
L(I)26(Q)=ne(I) L(I)>4(Q)=nt(I)
(%> 1
SO b > Q@) =n* Y [(fshrw)? > 20 or e ()
1€D QEeD: QeCar(I) 1€D QeD: QeCar(I) ( ) (Q)
(1) >£(Q) >nk(I) 2(1)>e(Q)>ne(I)

2
1

n? 1 \f,hm
| f)hIK n— R ist(z 11 (.’E),
> T am e OF O T M\ 1y Eem

Q
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which can be written as

 hiw)] 1 )] B
ZHI le a0 Z|f|1| ZQQtlrnm(@-

IeD L+ == IeD =0
Thus

Sl X hdl |(ehen)|

QeD IeD: QeCar(I)
L1)>4(Q)=>ne(I) L

From the estimate for term B in (2.10) with 1 replaced by 2tn, we obtain

fa hl K
Z | |I| 1Fn,t(1) (J,')

1eD

Lr

1
S Com 2'0)* 9 £l o

Lp

and so altogether, the diagonal portion of HZQG'D ﬁc (Q)2 1o (m)” is at most
Lr

2 | fv hln
22 ‘ Z |I‘ lrn,t(I) (x)

t=0 1eD

ﬁ 1
S Con27 (2) 2T || £l

Lp t=0

= 17 1>Zcpn2 ) | £l =07 1>Zcpn2* 5 1o

t=0

17 .
8 70 | fl, i p>3
EIrEy] —t32=3 ~ 2 1 : 5
= T Y Cpn2 5 | fllpe = o § 7 (1og2 ;) Ifll. if p=3
=0 1 fll .o if 1<p<?$

21
Now we use the estimate ’<h717;m hQ;,Q> <n (g%) ® for Q € Car (I) and £(Q) > n (I), to obtain

2
Z |Q‘ Z <f7hl§fi> <h?th> 1Q (:E)
QED IeD: £(1)>£(Q)>nk(I)
QeCar(I)
) 1
S DR (FA VA1 > [ || (s )| 11 ()
I.I'eD: ICT QED: QeCar(I)NCar(I')
{n)ZeQ)=ne(1)
CQN\FHL@N\E 1
<SS Wl (b ) £9) LN L@
e(I) e(1) Q|
I,I'eD: ICI QED: QeCar()NCar(I')

on>e@)>ne(1')

Y [(fs ) [ [ hrn )| 3 e eI

= 7 Vi ; Q ($) .
I,I'eD: ICT’ VIV QeCar(nnCar(r') (Q)(Q)
«D)>0Q)>ne(1")

At this point we observe that the conditions imposed on the cubes I and I’ in the sum above are that
there exists a cube @ such that Q C I C I', Q € Car (I) N Car (I'), and £(I) > £(Q) > nf(I'). Tt follows
from these conditions that

e Car(I') and £(I) < £(I') < %5(1) —2%(D).

Thus we can now pigeonhole the ratio of the lengths of I and I’ by
(I
(1)

=2° for0<s<p.
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With s fixed we have I’ = 79T and

e ) (o
1eD \/m\/w QGCar(I)ﬂCar(ﬂ-(s)I)é( ) E(Q)

«D)>0Q)>nt(x)1)

. 2 |<fahl;n>|‘<f,h(7r(s)1)m> . @ 2
- Vo] Qecarm%m(mf (7igy) 10

£(I)26(Q)=2°ne(I)

o) | {F B ooy ) (1 2
~ s, .2 ’ s
s e (vt ) 10
|<f7 hI;K>| ‘<f’h(7r(5)l)'l*€> 1 :
= 2% 2% - 17 (z)
;3 NN 25 + W !
2
= Z ‘<fa hI;n>| ‘<f’h(”(s)1);“> 1 1; (x)a

Iep V | £/ ’71-(8)[’ 1+ di“(;;’;?;;(”)

where our sum is exactly like the diagonal portion with two exceptions, namely that I has been replaced by
7T in the second factor, and 1 has been replaced by 2°n in the third factor. Thus we continue with,

Z |(f, hiw)l <f’h(7r<5>l);n> 1 i

: 1; (2)
I€D VI }W(S)I’ 1+W75?;;(1))
2
B—s
oy A Fobionye) Do Ara,.n (@) :
250, ist s
= VI EEC =T 1+%¢?I;(1))

Q

[f, P <f’h(”(s”)?“> ﬂ_sg—ztl
I;) \/|T \/m ; Dasp (1) (m)v

since Taepy ¢ (I) = {z € I : dist (z, Hasyy (1)) =~ 212500 (1)} and dist (@, Hasy (1)) < £(1).
Now we continue to proceed as in the diagonal case to obtain,

2

§ tfo ) (b)) L 1
/1T dist(z,Has, (1))
ier VUL ylor] N S Ly

B—s
B h R|‘<f7 71); >
5 9 2t ‘ fa I; F o o)
; 1;; VIl e " .
2
< ~, 2 1(f, hre) ’<f’h(’f('“”)“f>
~ 22 Z 1] LIrae, () Z ()T Ir,e, . (1)
t=0 IeD IeD
Lr
& (P
] ) [
S ZZ . 52 ‘]I‘ lfzgnt(1)+ Z ﬂ-(s ]| Iroe,. (D) )
t=0 IeD .
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for every choice of 6 € (0,1). Thus it remains to estimate each of the terms

2

B—s B—s f‘ h
— fah/ H 1 _ ‘< ) a(s) T ;n>
I DS I D I PR R
t=0 I€D e t=0 I€D T
Lp
and then minimize the sum over 0 < § < 1. But from (2.10), we have
| fv hI s PR

Sou| Wbty s e e s,

t=0 I€D I
B f ’

—2t ’< ’ (”(5”)3”> 2 [(fs b)) S
D D R Tl I 22 > S A | S ot ISl
t=0 IeD I'eD e

Lp
since
Lyt (I Tasye (1) = {x € I :dist (z,Haspy (1)) = 212500 (I )}

C {zel:dist(z,H,(I") =20 (I")} =T, (I").

Thus with § = 2~ D , we obtain

2

E:KﬁmmHKﬁh&WOw> 1

1 1
S 5Cp,n (2°1m) 2D ”fHLp + 5

s 1 s
N [&“p“+a}@mnw%wvmm=2cwﬂapnasznﬂup

1;

Ly

1
Cpnn?@=D ”f”[,p

__B 1
< 20,2750 || fll e = 2Cmn* @D || fll s

since 0 < s < . Finally we sum in s from 0 to 8 = log, % to conclude that,

[N

1 1
) 77 logy L 1]
~ M g p
\QI 2L

QeD
Lr

This finishes the proof of Proposition 13. ]

2.3.2. Surjectivity. The proof of Proposition 14 is very similar to that of the previous proposition in light of
the following equivalences. Using ‘A’]m f ‘ < M (A}’;H f), together with the Fefferman-Stein vector-valued

maximal inequalities [FeSt] and the square function equivalence (2.1), shows that

(E:Vwmf
IeD

N

ZAIHf

1eD

= £l -

1
2)2

(}jummfﬁ

1eD

Lp Lp

We also have from the square function equivalence that

(2.11)

(x

1D

(at) "1

1
2)2

Q

~I (2n) s

1D

Z <fa h;';,@> R

1€D

(Z ‘<f’ h?;ﬁ> hI;H 2) '
IeD

Lr Lr Lp Lr
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Furthermore, from the definition (SZ]))tr f=>ep <f, h}’m> hr.., we then obtain

1 1
3 3
r r 2 * 2
CRE I (CON T | DI NN = 1 22 [((SP)" 1) B
QeD Q€ED
Lp Lp
1 7 : 1 2 :
S [T OCERTSI N B[O SR
QeED I1eD o QeD e
Proof of Proposition 14. From (2.12) we have,
. )\ 2 . 2\ 2
tr
oo o, = (3 mlnf) | (5w sl ) |
QED o QeD IeD e
which we now compare to
: 1 N
HSUDJCHLP ~ Z |<S'r]fa h’Q;K> hQ;r@|2 = Z @ Z <f7 hI;H,> <h?;R5hQ;I’€> )
QeED » QeD IeD e

that was shown to be comparable to || f||,, in Proposition 13 above. The only difference between the two
right hand sides is that the convolution appears with A/, in the first norm, and with hj, in the second
norm. We now use the estimates in Lemma 15 just as in the proof of Proposition 13 above. Here is a sketch
of the details that is virtually verbatim that of those in the proof of Proposition 13. Recall that H,, (I) is
defined in (2.4).

For convenience we first rewrite the estimates in Lemma 15 so as to apply directly to the inner product

<h1;,.i, th;n> instead of <h}’m, hQ;H>. This is accomplished by simply interchanging @ and I throughout:

<n, for Q and Q' siblings,

(2.13) ’<hgm,h%> ~ 1and ’<h%wh@m>
3

hg;ﬁﬂhf;ﬁ> S n (NQ)

(
(itis)] < 020
(

J4
k+3
Wt S (i) e S Q) s Iy (1) £,

, for Qe Car(I),

, for I € Car (Q) and £(I) > nf(Q),

n® \(Q)
<h22;~’ hI;H> = 0, in all other cases.
Now we have by the square function estimate (2.1),
2\ 2
tr 4
(SUD) f‘ Lpr ~ Z Z <f’ h1§'€> <h1;ﬁa hg;,g> hQ;m
QeD |IeD
Lr
) 2 3
2 ) )
~ Z ‘<f7 h’QW) <hQ§'f’h22;n> |h’QW +O Z Z <f7 h’I§H> <h1§ﬁ7hg;n> |hQ‘
QeD QED |IeD: 1#£Q
Lr I
1P 2 3
1 1 .
~ Z ‘<fa hQ§N>|2@1Q +0 Z @ Z <fahl;n> <hI;mhc/2;,Q> %) »
QeD ; QeD IeD: T#£Q
P e
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where for some ¢, > 0,
P

-

P

1
> i hal” 1rta =111 Y 18guf? > ¢, | fII, -
QeD o QEeD e

|
|

Thus we have for each Q) € D,
S hnd (bl y = S Lk (hr bl )+ Y (o) (R B )

1€D: 1£Q 1€D: 0(1)<(Q) 1€D: £(1)>4(Q)
IeCar(Q) QﬂHg(I)?ﬁ(D

+ Z (fyhrx) <h1%'~”~7h23;n> )

1€D: (1) >6(Q)>ni(1)
QeCar(I)

As a consequence of the estimates in (2.13), we have for each Q € D,

1 /6(Q
S ()| 5| Gk (et )|+l (2
1€D: I#Q IeD: £(I)<4(Q) 1€D: £(Q)<ni(I) Ui
Ie€Car(Q) QﬁHg (D)#0

m Y e (59)

IED: £(I)>6(Q)>nL(I)

QeCar(1)
= AQ+BQ+C(Q).
Altogether we have
2 3 1
1
(2.14) > Q| > o) (hre b, )| Ta SIPIEICIEE
QeD IeD: I£Q QeD
L Lr
1 1
2 1 2
2
2 a® @@t
QeD QEeD
Lr Lp
We now claim that
2 3
1
(2.15) Z \Q| Z (fshrw) <h1;mh%m> 1q Snzle <10g2 > 171z -
QED IeD: 1£Q
Lp
With this established, and taking x > &, we obtain just as in the proof of Proposition 13,
2\ 2
1 c
Z |Q| Z <f? hI;N> <h1§mh22;m> < Cnz» (10g2 > ”fHLp 2 ”fHLp )
QeD I1eD: 1#£Q
Ly

with 1 > 0 sufficiently small. This then gives
C C
Collfllo = ||(SD) 1], = en Ifllw = 2o = 2SN

which completes the proof of Proposition 14 modulo (2.15).

We prove (2.15) by estimating each of the three terms on the right hand side of (2.14) separately. These
three terms are handled exactly as in Proposition 13 except that the arguments for handling terms A and
C are switched, with term B handled the same as before. We leave the routine verifications to the reader,
and this finishes our proof of Proposition 14. O
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2.3.3. Representation. Combining the two propositions above immediately gives the proof of Theorem 11,
as we now show.

Proof of Theorem 11. Fix a grid D in R™. Combining the two propositions shows that SnD is a bounded
invertible linear map on LP. Indeed, Proposition 13 shows that SnD is one-to-one and Proposition 14 shows

that Sf]’ is onto. The boundedness of Sf]’ is immediate from Proposition 13 and the boundedness of (577,,3)71
now follows from the Open Mapping Theorem.
Thus dropping the superscript D we have

F= 8y () =D ()7 o) B
1D
If we set N
RIF = (S, hre) e = O (S5 F) = (3 o) (Suecry * e )

then we have

fo= Y A=Y (S fohrw) bl for feLP,

IeD IeD
o o2\? 1 3 )
(Z ‘A"f‘ ) ~ <Z | lf’ hIK | |I|11> ~ ||S77 lfHLp(g) ~ Hf“Lp(g) s
IeD Lo (o) IeD o Lo (o)
1 1
2 1 2
2 2
<Z |A;]f‘ ) ~ <Z ‘<fa h/I;fi>| |I|1I> ~ Hf“LP(g—) )
IeD Lo (o) IeD o Lr(o)
which shows in particular that {A?H}I - is a frame for LP. ]
’ €

Notation 17. Since the frame {&?H} will be used extensively in what follows, we drop the tilde and
) IeD

write A7, instead of A?W i.e. we redefine AJ._f to be

NF =S (ST by ) B

1eD

Thus we have inserted the bounded invertible operator Sn_l into the inner product above.

2.3.4. The smoothed pseudoprojections. The smoothed operators A;’;K are neither self-adjoint, projections
nor orthogonal, but come close as we now show. Recall that

AT f= <( Sen)” f,hm> 1., where Al =, % hry -

Lemma 18. With notation as above and ¢ = ¢y * ¢, we have

(A?;m)trg = <9ahy;n> ((Smn)_1>tr hriw

2 tr tr tr ~ ~
(80,)" = st ont [(88,)"] =t (1) and (88, (88,) " = .50 = 11,51
=1
where A, f = <f,h}7ﬂ> ? , and

where af,, = <(S n) h}’m,hlm> ~1 and b}, = <(S*€,n)_2 R, hI;H> ~1

In particular we have

and

1
2 2

n
e~ || D le

i M

Lr
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Proof. The adjoint property follows from
(Dhuto) = <<(Sﬁm>71f’h1m>h?;mg>:<h}’;mg>/(Sn,n)*lf(x)hm (2) do
= h?;mg /f(w) (Sn,n)’l)tr i (2) dz

= [1@{(5 ™) hr @) (i) s = (1.(8,) "0

The pseudoprojection property follows from
(a0,) £ =2, (87,8) = (Sun) ™ (87,F) hre ) B
= (Sun) {{ )™ ot ) W} ) B = (Se) ™ b ) (Sn) ™ B s bt ) B
= (S e ((Se) ™ Foe) Bl = (S ™ W) D f = al A, f
However, (Sx,) " is close to the identity map by (1.5), so that using ¢, = ¢, * ¢, , we obtain
@l = (Sen) W) = (W hre) +0 () = (Sguy * hrins hr) + 0 (1)

2
2
(Snpttn * Pres Sty * e ) +0 (1) = 05| +0 () & Il +0 (1) = 1.

L

We also compute

(A??“) (A?myrf - <(S“’")_l (A?;K)tr f; hI?“> hl.w
(S ™ {(F M) ()™ Pt o or ) i = (L) ((Srn) ™ s o) B
(i)™ brins ) (F W) W = ((Sian) ™ B e ) B f.

Finally,

F=3 (21 1= ) [0 7] b = [(52)7]S () b

IeD IeD IeD
shows that

~
~

1]

Z <f7 h?;,@> Rrk

1eD

I

11z = H (507 S m )

1eD

Lr Lr 1eD

Lp

3. THE EXTENSION OPERATOR AND OSCILLATORY INNER PRODUCTS

Given f € L? (0,,—1), we define the extension operator E, localized to a cutoff function x (z) by

B © = F (o) (@ = [ FE)e () dn (o).
If we use a one-to-one onto coordinate patch ® : S — P such that Supp xy C P and S is a cube centered at
the origin in R”~! with dyadic side length, then we can write

Ef(6) = / £ () e Ex (y) doms (y / £ (® () @Sy (B ()
= /h(az)eiiq) D¢ () da
S

dx
|det VO (z)]

where
X (@ ()

hiw) = f (@ (Bx)) and ((z) = G rea TN
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Since the map ® : S — P is a diffeomorphism, we have

Hh||m(s) ~ Hf”LP(IP’) )

and thus the extension operator E, : LP (0,—1) — LP (R™) is bounded if and only if the linear map Ty :
L? (S) — LP (R™) is bounded, where T is defined by

Tsf(g)z/Kq,,c(x,g dm—/f Ve @ gy fe LP(9),
where Ko ¢ (2,€) = e 0@,

Now construct (n — 1)-dimensional Alpert wavelets {h?;l} g oo R"~! where G is a translation of the
* Jre

standard dyadic grid on R"~! so that S € G and the origin is a vertex of 7'&'(;)5 (also recall Notation 12),

and define the smooth analogues A7, Ln

the smooth Alpert reproducing formula f = SH,nS;,%f =Y rep <S,;}7f, h?;;1> h?;l’" to get
S (Saathint) [ Koc@ons @) da

Tsf (& /chg‘xf[
Ieg Ieg

= Y (Senfhint) /S eTIWEC () W (@) de = 30 (ST ) /5 @ e (z) da.

Ieg Ieg

of these wavelets as in the first section above. Then expand f by
<s;}7 £, h?;;1> h;;’”} da =

In addition we construct n-dimensional Alpert wavelets {h’} H} on R”, where D is the standard grid on

R"™, together with their smooth analogues h"’" as in the first sectlon above. It will be important, at least in
a technical sense, to use the standard grid D on R™ which enjoys the property that the distance from the
origin to a cube J € D is at least the side length of J, if the origin is not a vertex of J.

Notation 19. We are now using the index n — 1 or n in the superscript of the notation for an Alpert
wavelet, to denote whether the wavelet lives in S C R™"~! or in R™. The index n in the superscript denotes
the smoothness injected by convolution. As in Notation 12, we usually suppress the index a € I' that runs
over the set of all Alpert wavelets associated with a given cube.

To estimate the operator norm of T's we will use in particular the vanishing moments up to order k — 1

of the wavelets h7, L1 and hy,

/hn 17/ x%dx

Ry (§)€%dE = 0,  for 0 <|al <k,
R’!L

0, for 0< o] <k,

along with sharp estimates for oscillatory integrals in which the amplitudes involve smooth Alpert wavelets.
If f is supported in an appropriate small subcube S of iSo, and has vanishing moments up to order less than

K, then we claim that we may restrict the Alpert wavelets h};l (z) and h?;l’" arising in the reproducing
formula to those with I C %S, ie.

@) =SeaSahf @)= > (Suhf i) @),
IeG: IC:S

A standard reduction: We begin by noting that if @) is any cube in R", then the Fourier multiplier
1 is bounded on LP? for all 1 < p < co. If ¢ is any smooth function on the sphere S"~1, then the
Fourier transform F (¢o,,—1) of the smooth surface measure po,,_1 has decay

|F (pon-1) (OIS (L+1€)” 7,

by e.g. [Ste2, Theorem 1 page 348]. Since this function is in LP for all p > it follows that

nl’

2n
(3.1) 17 Aeeon-1)lp, S IF (on-1)lL, 1, forallp>——.



28 E. T. SAWYER

We now claim that for the purpose of proving the probabilistic Fourier extension conjecture, it suffices
to prove the bilinear inequality [(Tsf, g)| < ||fll 10 9]l for functions f € LP that satisfy

(3.2) @)= S (SR MY @),

ICSo

i.e. where the Alpert Support of f is contained in the dyadic subcubes of Sy C iS . Indeed, it suffices
to consider functions f € LP with spatial support in Sy C iS, where Sp is as in (1.10) above. Then

we can reduce to the case where f has its Alpert support contained in the dyadic subcubes of Sy,
simply by subtracting off from f an appropriate polynomial of degree k in z restricted to Sy, and
appealing to (3.1). But since S, is bounded and invertible on L?, we can then further reduce to
testing the bilinear inequality over functions of the form

£ = Senf = Sen 3 (T Y B = 0 (S L by

ICSo ICSo

hn 1,m

as in (3.2), where we have used Smnh?;gl in the final equality.

We will now estimate the oscillatory inner product

(3.3) <T5h?;}’“,h’;;g> = / ( /S e*@(m)’ﬁh’;;;“’ (z) dm) T (€) dE,

by considering the decomposition of the pairs (I, J) of dyadic cubes in P given in (1.12) of the introduction,

P="P U Gmun.

m=0

Thus Py consists of pairs that are aligned radially away from the origin, P, consists of pairs that are radially
staggered at angle roughly 27", and R consists of pairs where [ is ‘close’ to the larger J.
Regarding Py, our intuition tells us that when the approximate wavelength % of the exponential e~%*¢

does not exceed the depth —~ of the spherical ‘cap’ ® (I), and the side length £ (J) of the cube J supporting

f(l )
R’} is approximately the distance of the sphere from the origin, namely 1, then we should not expect to
derive any cancellation from the presence of the exponential e *®(*)€, Thus the only estimate on the inner
product in this case should be the trivial one, in which the oscillatory factor e ~*®(*)€ is discarded,

(3.4) (Toni ) < | W

n—1,n
h’];n ’

Lt 2

1
) e(r) S dqise(0,0) \5|

——= and I and J are suitably aligned in the same direction, we must obtain improvements with geometric

While this crude estimate will ultimately prove adequate in the case when £ (J) ~ 1

@(1 )
decay in parameters |k| and d > 0 when

k 2d—1 ) 2d+1
((J) =2" and — < dist (0,.J) <
¢(I) 14

Moreover, when I and J are not suitably aligned, and there is insufficient oscillation within the inner product,
we will need to invoke interpolation arguments with L? and average L* estimates when acting on certain
Alpert pseudoprojections.

When k£ > 0, we will gain geometically if we integrate by parts radially in £ using the smoothness of
the wavelets A}, and when k < 0, we will gain geometrically in |k| using the large number of vanishing
moments of h ’" When d > 0, we will use the classical asymptotic formula for the smooth surface carried

measure h" Wlth sharp bounds on the derivatives of h" L7 to derive gain. Regarding P,,, we will use in
addition a tangentlal integration by parts decay principle since the critical point of the phase no longer lies
in the support of the amplitude (hence stationary phase is not needed here). This intuition suggests that we
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further decompose the index set Py of pairs as

(3.5) Py = U U P, where
kEZ d=1
2d—1 2d+1
Pyt = {U, ) eP:JCK(), () =2% and —— < dist(0,J) = — o,

t(I) t(I)

for k,d € Z, and the index set P,, of pairs as

(3.6) Pm = U U Pkd where

kEZ dez,

phd — {(1, J) € Py £(J) = 2%, and 2 < ¢ (1) dist (0, J) < 2d+1},

for k,d € Z and m € N. For m € N and d < 0, a different pigeonholing that respects resonance is required,
which we defer until needed in Section 8. Similarly, we defer further pigeonholing of R until needed in
Section 7.

Next we introduce a standard change of variable that simplifies calculations, and then derive the well-

known asymptotic formula we will use with sharp estimates on the remainder termS.

3.1. Change of variables. We write z = (2, z,,) for z € R™, and set

(3.7) ¢(z,y)=®(z) ®(y), where ®(z)= (:r \J1-— |g;|2> and z € R"!,

and define the variables (y, A) by

(38)  y—o (é) —Gand A=l e (€.6) = €= AP() - (Ay,A\/ - y|2> ,

since then
§
A (z,y) = [¢] @ (z) - (y) =[] P (2) - G =o(z)-€.
We now claim that
a /’ n
det 7(5 &) = @
I(y,A) &
Indeed, we have (y,\) = (%, |§|) and £ = A (y, 1-— |y|2)7 and so
9.& . 9 &1 9 &
9¢; [€] 9€,, 1 I€] o€, €]
a(yla"'aynfh)‘) o . : .
) T 0 fna 9 Sn-1 9 n_1
(€61 60) 26, "1 e
aigl ‘£| ¢, 1 ‘€| o€, |£‘
1 & gg. g, s o
HRGEE B B " =&1 - =& =66,
- Ghs 1 et | Tl | e e e
&1 En_1 En 51 |€| gn—l |§| gn |§|

6These estimates are undoubtedly in the literature, but since the author was unable to find the precise form needed here,
we include the classical arguments below.
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where
€ —¢&2 - =66 66,
det E ) E ) :
_Elgngl T |§‘ - EnEI _Enflgn
GlEP 0 &l & €l
€2 €3 - &b 66,
= felPder| o 5 = €1* &, e = ¢, 1
_glfnfl e |€| - fnfl _fnflgn
51 e §n—1 gn

by an induction on n € N.
Thus we have

[{E ST ST SRR ST
det 3(1/17---7%—17)\) — 13n det )

8(517"'7577,717'571) |£‘ _§1£n71 ‘£| _5721—1 _gnflgn
203 T S 13 L [

_ L el S

= e T

as claimed. Hence
a(él;"vfn—l’gn) |£‘ L )‘n_l

det

0 s Yn—1s A , ’
(yh y Yn—1 ) gn )\\/1_|y| \/1_|y‘2

and the change of variable £ — (y, A) gives,

(rswtomgzy = [ e @ € dode
n Rn— 1 7

i<I>(3:)~)\ v/ 1-yl? ) n—1,n n,n ( ( 2)) 6( 13'--a€n717£n)

e hy. z)h7 A ly,\/1— det dxdydX
Lo i @R (3 (30 1= ) ) den Gy
// / ei)\q)(w)-@(y)h?‘;l’n (z) K" <>\y,)\m> N dxdyd

R JRr—-1 Rn—1 ’ ’ |2

ML=y
= / / / M@V (1) 4] (y, A) dedyd),
Rw 1 Rw 1

where we are now using the convenient notation,

(3.9) p(zy) = @(2) 2(y),
ol (z) = hi " (x) and 7 (&) = B30 (E),
~ n—1
7/}7} (y,A) = hTJlZZ <)‘ya)‘\/ 1- |y2> \/)\7|2
1-y

Note that if £ € J, then (y, \) € Ttand X Traa .

3.2. Sharp bounds for oscillatory integrals. Here we review the well known asymptotics for oscillatory
integrals, see e.g. [Ste2, Chapter VIII], paying close attention to the constants involved. We emphasize that
the results in this subsection are well known, but as we could not find in the literature the exact form of the
estimate for the remainder term that we use here, we reproduce many familiar arguments below.

We consider the oscillatory function Z,, ¢ : R? x (0, 00) — C given by

Ia;,dﬁ (yv )‘) = / ei)\qﬁ(a:,y)a)\ ($= y) di[,',

defined for A > 0 and y € U where U is an open subset of R?, and we call ¢ (z,y) the phase and a (z,y)
the amplitude of Z,, 4. We will follow a treatment of asymptotics for such oscillatory integrals given in a
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Rice University blog [blogs.rice], but we will obtain a sharp estimate for amplitudes of the type that arise in
the smooth Alpert expansions.

‘We use three familiar preparatory lemmas. The first of these is the Morse Lemma, which will be applied to
the phase function ¢ (z,y), in order to transform ¢ into a nonsingular quadratic form in x at a nondegenerate
critical point in . The second lemma gives high order decay bounds in the special case when there are no
critical points in z of the phase function that lie in the support of the amplitude, and the third calculates
the oscillatory integral for a quadratic form.

Lemma 20 (Morse Lemma). Suppose yo € U C R? and o is a nondegenerate stationary point for ¢ (-z,vo)-
Then there exists a neighbourhood V-C U of yo, a neighbourhood W of xy, a smooth function

X:V-=W,
and a smooth function
U:V-WxV —-R"
such that

(1) For everyy € V, X (y) is the unique stationary point, which is also nondegenerate, for ¢ (-, y0) in
wW.
(2) For everyy €V, the map W — R™ defined by x — VU (x,y) is a diffeomorphism onto its image and

(310) 6 (e.y) = 9 (X (5)) + 3 ¥ (2,9)" [26(X (4).9)] ¥ (x.).

Furthermore,

(3.11) U (X (y),y) =0 and 0,9 (X (y),y) =1d, .

(3) Finally, we may take W = B (x9,ay) for some small positive constant
Cn

mMaX|q|<3 SUP(z y)e(Supp a)xU |aza¢ (LL’, y)| ’

where v > 0 satisfies inf, [02¢ (X (y),y)] = v1d,.

a =

Proof. For any y, the stationary points are the solutions of the equation 0 = 9,¢ (x,y), and by the nondegen-

eracy of the critical point, and the Implicit Function Theorem, this equation uniquely defines = as a function

of y in some neighbourhood A of (zg, o). Since in our application, ¢ (x,y) is homogeneous of degree zero

in y, we may assume this here as well. Then [02¢ (X (y),y)] = vId,—1 for some v > 0 depending only
o

on ¢, and so we may take N = B ((zg,y0),a’y) where a’ =

2 for some small positive
MaX| <3 SUD (s y) 102 B(2,9)] p

constant ¢}, depending only on the dimension n.
Now we take the Taylor expansion of ¢ (z,y) in & about X (y) to obtain, upon noting that the first
derivatives in the Taylor expansion vanish at the critical point X (y),

6 (e,9) = 6 (X (5) ) + 5 (2 = X ()" Blay) (e~ X (),

1
where B (z,y) = / (1—5)02¢ (sz+ (1 —8) X (y),y)ds.
0
We now construct a matrix-valued function R (x,y) such that

V(z,y)=R(z,y) (- X (y))
has the properties listed in (2) above. Indeed, this ¥ will satisfy (3.10) provided

(3.12) R(z,y)" 020 (X (y),y) R(z,y) — B(z,y) =0, for (z,y) €N.

We interpret the left hand side of (3.12) as a mapping from M,, (R), x R? x V,, to S,, (R), where M,, (R) is
the set of n x n matrices and S, (R) is the subset of symmetric matrices. Taking the differential of the left
hand side of (3.12) with respect to the variable R and evaluated at the identity matrix Id,,, we obtain that
the derivative map,

dR — (dR)" 92¢ (X (y),y) + 926 (X (y),y) (dR) ,
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is surjective, since whenever C' € S, (R) is symmetric,

(560X @0) 7€) 226 (X (1)) + 86 (X w0 (5 026 (X ) )] )

1 1
= 5C+5C=C.

Thus by the Implicit Function Theorem again, there exists a smooth M,, (R)-valued function R (z,y) defined
on some neighbourhood Ny C A of (g, yo) that satisfies (3.12) everywhere that it is defined. Note that we

"
C

may take Ny = B ((zo,yo0) , a”’v) where where a”’ = M sup(:,g,)lag.*cb(m,y)\

neighbourhood Ny to A, completes the proof that there is a neighbourhood W of xy such that © — ¥ (z,y)
is a diffeomorphism from W onto its image, and that (3.10) holds, and that ¥ (X (y),y) = 0. Note that we
may take W = B (x¢, ay) where a = . The remaining assertion 9, ¥ (X (y),y) = Id,,

. Possibly shrinking even more the

Cn
mMaX|q| <3 SUP () |02 d(2,y)|
is straightforward since,

0r o) ¥ (X (1),9) = [0:R (2,9) (= — X (1)) + B (@,9)] [o—x (= B (X (4) .¥) = 1d,, .
because we evaluated the differential in R of the left hand side of (3.12) at the identity matrix Id,,. O
Recall that
Lo N = [ 40y (@) do,

where ¢ € C® (R? x Uy) and ay € C® (R} x U,). We will need the following estimate in the absence of
critical points for x — ¢ (z,y).

Lemma 21. Suppose that the R™-valued function 0,¢ (z,y) is nonvanishing on (Suppa) x U. Then for
every N € N and compact K € U we have

sup |Zy, ¢ (y, M) < ONK > sup |0%axll gy, for (y,A) € (Suppa) x U.
yeK la|<N yeK

Proof. For any M € N we have

O0p9 (2,y), 0 M eir¢(@y)
Ia,\,¢(y7)\):/ (0:9 (2,y) , 0x)

(X oo )

ax (xay) d$7

and integrating by parts gives

N
1 029 ()
sup [Zoy,o (1, A)] < sup — 0y, =220y (2,y)| da
ek vek AN 106 (2, )|
< Ovyy X s [ 10 )l ds
la|<N YEE JR™

= CNK N Z sup [0y a)\HLl (Rn)x Lo (Rn) *
A <N VE

The final preparatory lemma is the calculation of an oscillatory integral for a quadratic form.

Definition 22. For a tempered distribution u € S (R™), we have

() = F (u) (€) = / e (2)d ().

n

Lemma 23. Let A € M,, (R™) be symmetric and nondegenerate with signature sgn (A). Then the tempered
distribution €™ A7 has Fourier transform given by,

gtrg—1g
et

det (A)

(3.13) F (eiz”Aa:> (€) = w3 ien()F
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. . . Ztlwl? s
Proof. The Fourier transform of a Gaussian function e~*1I" is given by

112

_t|gg\2) _ ne
F ) (@ =t —
Now note that both sides of the above identity extend to analytic functions of ¢ in the right half plane

{t e C:Ret >0}. A standard limiting argument and orthogonal change of variables gives the formula
(3.13). O

, for all ¢ > 0.

3.3. The main oscillatory integral bound. Here is the main oscillatory integral bound.

Remark 24. In the application of stationary phase to bound the below form in Section 6, we won’t actually
use the oscillatory term e XWY) in the asymptotic formula below, and instead we only need the estimates
of the modulus of Z,, 4 (y, ) that follow from the asymptotz'c formula using |e”‘¢(X y)| = 1. The reason

for this is that when dealing with the below subform Bbelow (f,g) with k,d > 0 large, we can first apply radial
integration by parts in the inner product, and second apply stationary phase to the resulting inner product
with a new amplitude. This way the geometric gain in k has been achieved without using the oscillatory term
e XW)Y) - If we were to instead apply stationary phase first, then we would need e**XW)Y) for integration
by parts aﬂerward.

Theorem 25. Suppose that ay (z,y) € C° (R;‘ X RZ), Yo € U C R?, and that ¢ (-5, y0) has evactly one
nondegenerate stationary point on the support of a at xg. Take V, W, X and ¥ as in the Morse Lemma.
Then for every M € N, there is a positive constant Cy; depending on M and ¢ such that,

4 M+1
IO‘)\7¢( ) SBGA¢ ya +Zm2>\)¢ ya m,(b\; ) (y7>‘)7

where
) 271\ 7 i sen[028(X (1) m)] FHA6(X (1)) X))
ma,cﬁy,)\:() a)\Xy7yv
’ A 102 (X (v),9)]
0 % i[sen B(y) F+A¢(X (v).9)]
0 ) 2w e
B0 ) = — ()
(2))" 2 det B (y)
1 -1 1 (7,y)
T 7 . A T/ N\ B xr xr= b
X{{a'det&v\ll (x,y)] ) det 0,V (x,y) } det [0,V (x,y)] la=x(w)

and

91\ £ eilsen B +A8(X (1))

Ay = ()
A det B (y)
M+1
i0.,B(y) "0, B ()"
- ’ . y) ¢
< [ro < > N ) @ (—éﬁ) .

where

ax (¥, (2),y)
det [(0,7) (T, (2))]

and B (y) = 0%¢ (X (y) ,y), and X (y) is the unique stationary point of ¢ (-5,%y) in the support of a, as given
in the Morse Lemma, and finally,

R4 (ib) = /o e’ (ib)M—H ((J\/[—l—l)'

f(zy, )=

1 _ M+
2 dt, forbeR.

The remainder term satisfies the estimate,

M+1 —z- a
(3.14) sup mfm o ) ( ,)\)’ < CM)\ 5 —(M+1) Z ||a:n G')\HLZ(R;)XLOC(RZ_*)\I) ’
yev o <p+2(M+1) '
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where p = {%] is the smallest integer greater than 3, and if N > M +1+ %, then we also have the alternate
bound,

(3.15) sug ‘9{,(1];421) (y, V)| < Cyr—2 7M1 H(Id —Ag;)N a/\)
ye

Li(Rz)x L (Rp)

Proof. Take V., W, X and ¥ as in the Morse Lemma, so that

6 (e.y) = 0 (X (5)) + 30 (:9)" [26(X (1).0)] ¥(wy), yeV.

Using Lemma 21 together with a partition of unity shows that we may assume ay (z,y) is supported in W
for all y € V. Thus a change of variables

2= U (ay) = ¥, (2),

gives,
; -1 ax (\Ijil'z?y)
Ia 7 y,)\ — / 1/\¢ a:y)a ZL’ Y dx —/ 62)\4)(\1}” z,y) Y — dz
A¢( ) - A ) " det [( I\Ij) (\ijl(z)’y):l
_ [ el )] _a@00s
Re det [(9,0) (T3 (2),y)]
_ / A [so s EEON] oy (1 () )
det [(0, V) (\I/?j1 (2),9)]
ei/\<¢>(:ro,yo)/ ei/\zt, de)();(y),y)zf (z,y,A) iz,
where
\ijl
f(Z,y7>\) = a ( Y (211y) .
det [(81\11) (\I/y (z))]
Now write
(3.16) B(y) = (92¢) (X (v),v),

and apply the Fourier transform F and its inverse ! in the variable 2 and its dual variable { to obtain

Loy (9, 0) = ePolrom) / Fo (X)) F U ) Qe

n

Using Lemma 23 with A = % (y), we have,
. 7 eisgn B(y) et g(y)—1
Too ) = eeom Tl [ SR (1 ) (e
det %B (y)
21\ 2 eisenB(y)§ giré(zo,y0) -l
= — e T FoN(f (2, dc.
) s L SO

Next we use Taylor’s formula with integral remainder to obtain that for any M > 0,

b e (i)
et = Z a T Rary1 (ib),
=0
where
Yo (L= b !
g ith /. “w-vy ib)| <
Ryry1 (i) /0 €'’ (ib) 7+ 1] dt and |Rpz41 (i) < WED)]

and so with

y_ S"B) ¢
2\ ’
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we have

o\ £ ilsen Bw)F+re(X (y).)] M
317) T, oA — (2
610 TN - (F)

(27‘_) z ei[sgn B(y)%-&-kqxx(y)’y)]

= ((rp o) 1) ©c

=O

Y det B (y)
M+1
i B (y) ' 9 > R
-1 < i N _¢"B(y) ¢
<[ 7 = / <<>RM+1< P ac
Finally, using the Fourier inversion formula [, F~* (g) (2) dz = g (0), together with the identities
U0 = X (),
det 9,0 (X (v),y) = detld, =1,

from part (2) of the Morse Lemma, we obtain

[t ((empwo) r) ©a=(erpw o) 10, ose<ar

Now when ¢ = 0 we have
f (0) — ax (\II;l (0) ’y) _ ax (X (y) 7y)

det [0, 9 (0,1 (0),y)]  det[0.9 (X (y),y)]

From the change of variable (z,y) — (z,w) where z = ¥ (z,y) and w = y, the Jacobian matrix in block
form is,

=ax (X (y),y).

0 (z,w) [ ng gy; ] _ [ 8,V (z,y) 9,V (z,y) ] ,

8($,y) N On Idn
and so
O.x Opx | _ O(x,y) [ 0,9 (z,y) 9,7 (z,y) -t B 1 Id, -9,7 (z,y)
0y Owy | 0 (z,w) N On 1d, " det 0.V (x,y) On 0.V (z,9) ’
Thus we have by the chain rule,
9.\ _ [ o.ax oy a0\ 1 Id, -8,V (z,y) " [ 0.
Ow - Owx Oy Oy ) detd,V (x,y) | On 0V (2,y) Iy
S Id, On Do
 det 0,9 (2,y) | —0yV (z,y) 0.V (z,y) Oy
_ v Oz
— det 0,V (2,y) \ —9yV (2,y) 0 + 0,V (x,y)0, )’
ie.,
(3.18) 0. = !

det 0,9 (z,y) Oa-

Thus when ¢ = 1 we have

tr -1 _ tr M (\Il 1<Z),y)
(orBw) ™0y = (” " ae [0.) (¥ <z>,y>J)(°)

- YL ax (z.y)
R <{ det”ww} B detaxW(%y)a”}det[axw,y)])'””_X(”

_ ax (z,y)
= Lo )det (0,0 (z,9)] le=x )
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where

- 1 tr 4 1
L0002 0 gy P9 g

is a second order differential operator in x with coefficients depending on both x and y. More generally, the
same calculation shows that for 0 < ¢ < M, we have,

¢
1 tr -1 1 ax ($7 y)
({ {31. det 9,V (=, y)] B(y) det 9,V (z,y) 8,;} det [0,V (=, y)]) la=x ()

_ o a(zy

(0B 0.) 10

Thus the identity (3.17), together with the bound ‘gMH (—iEHBg)ilg)‘ < (M-li-l)!’ implies that,

M+1

(3.19) RO ()] < Casa 80040

7 (<az,B<y)1az> f) Rarsi

L1(Ry)

IN

_n_ (M
Crpp A~ 87 MHY ) 107 axll 2y x Lo (Rp) >
lal<pa(M+1)

where in the last line we have used Cauchy-Schwarz, the derivative identities for F, and Plancherel’s theorem
with the smallest integer p = {%] greater than 7. Indeed,

[ R@] (rigp)" (1+16?) " ae

(L. 2

Chn </ |(1d,, Ax)ph(:c)fd:r) ,

=
—~
o

QU
Iy

I

(1+ |£|2)pﬁ(§)\2dg>é (/ (14 |§|2)2pd§> 2

1

IN

IN

for the function

M+1

h@) = (9B "0.)

_ b g b AT ay)
B { [(% det 0,V (, y)} B(y) det 0,V (x,y) 8:”} det [0, ¥ (z,y)]

M+1

tr -1
¢ Bé!;\) ¢ to

~

T —1
To prove the alternate bound (3.15), we use the estimate ‘RMH (—z%)’ <

obtain,

Hle ((az,B@/)l o) f) Rasia

L'(Rg)
1

< e |7 ((eemw ) ) 1)MH | 1P e,

L*(Rp) : <)\

where
. ay (\Py_l (Z) ’y) _
(7D (sfz TR ) (©) = Fop, O,
ax (‘1@1 (Z) ) y)
2 det [(0,7) (T3 ()]
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Id—-A o
/n (1 N |C|;> ei”"C] @, (x)dx

/n e (Id =AY @, (z)dz

From the estimate

| Fa0, Q)] =

/ em((py (x) dz

1

(1+1)"

we have for N > M + 1+ % that

</1\)1\4+1 /n |<|2M+2 (Fof) (O dC < <:)[\>M+1 H(Id —Ax)N Spy’

$(3)" o

We conclude that,

1

Cel)”

< [aa-a.)~

N

y ‘

‘C|2M+2

Ll(Rg)me(R;)/Rn (1+ |<|2)N

1\ M+1 v
< (= Id—A, ]
Li(Ry)x L (Ry) ™ <)\> H( )"

dg

LY(Rp)xL=(Rp)

’R(M-H) (y )\)‘

and CrA~ 270D

IN

o (w7 0) " o

L (Ry)

IN

Carr~(MH1+3) H(Id AN aA‘

, forN>M+1+E.
LY(Rr)x L (R7) 2

O

Remark 26. The identity 0,% (X (y),y) = Id,, implies that det [0, ¥ (X (y),y)] = 1. Thus for £ = 1 we
have

1 1 1 (z,y)
O {det 0.V (z,y) B det 0,V (x,y) " det [0,V (z,v)] }
= By { 2ot 0, ¥ (2,9)) 7 0 det 0,0 (w,) + 02 [(det [0,9 (w,)]) o (,9)] }

where 92 [(det [0,V (z,9)]) " ax (m)] is

2 (det [0, (z,y)] | 30, det 9,V ( x,y‘ ay (z,y)
— (det [0, (z,y)])~ (95 det 9,V (x,y) ax (z,y) — (det [0, ¥ (:c)])_2 0r det 0,V (x,y) Ozay (x,y)
— (det [0,V (z, y)])f2 0, det 0,V (x,y) Orax (x,y) + (det [0, P (z, y)])f1 D2ay (z,y),
and so when we evaluate at © = X (y), we obtain that (det [0,¥ (z,y)])” " 02a (x,y) equals 02a (X (y),y),
and hence,
Q- () olien PO F+300x1).0)]

Pao YA det B (y)

{924 (X (4),9) + O (1190 e p) + Nl e ) }

Thus every gain of + costs two derivatives of a in x (ignoring the contribution from H8xa>\||Loo(R2) +
||a>\||LOC(R,,L)), which dictates our definition of the parameter d in the subform (4.3) below.

Note that we can write the formula for &]3((;? ¢ (y,\) compactly as

3 st i[sen B)T+A8(X(v).)]
) 2 7 e 4 ca(z,y)
(3.20) Boso Y A) = (A> T N ({L '9,BL™'0,} il ) =X ()

where

(3.21) L=09,Y(z,y) and B= B(y) = (02¢) (X (v),y) .
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4. STARTING THE PROOF OF THE PROBABILISTIC EXTENSION CONJECTURE

Our initial splitting of the bilinear form is modeled after that in two weight testing theory using (3.5) and
(3.6),

(Tsf,g) = > <TS AT, A329>

(I,J)eEGXD

Y Y Y Y {msant )

(I,J)ePo (I,J)eR m=1(1,J)EPp,
= Bbelow (f, 9) + Babove (fa g) + Bdisjoint (f’ g) .

We will further decompose these forms in the sections below according to the oscillation properties of the
inner product

(Ts 8707 £.08509) = (Lo W50 ((Swan) ™ £ 75" ((So) ™ 9010 )

(1) The below form Bpeow (f,g) turns out to be difficult to deal with by virtue of the need to com-
bine stationary phase with either integration by parts or moment vanishing, and only its subform
Bid (f,g) for k,d > 0 requires the strict inequality p > —=;. Moreover, the subforms with d < 0

below
can be controlled by relatively simple arguments when p > n71

(2) The above form Bapove (f, g) is less critical and considerably easier to handle in that it doesn’t use
stationary phase, and is in fact bounded for all 1 < p < cc.

(3) The disjoint form Bygisjoint (f,g) is handled similarly in some places, and made easier in those places
due to the fact that stationary phase is not needed, because the critical point of the phase lies
outside the support of the amplitude. However, in those difficult places where large numbers of
inner products are resonant, i.e. without either appropriate oscillation or smoothness, the use of
probability is required in L? and L* estimates.

‘We have
@n (T apt g aghe) [= (Lot )| (57, 7 £ g )| [((520) 7 0
T hn;'—gl,n B .
s J% 32).) {[|erzs@]as @} { [ o520 0] av @

a2 [laptri@lao@ = [|(Sen™ fhE) b do @)

NCRI ~ [{(Sen) ™ 11| VT
[[e35©| @@ = ({50 0ot )| VI

We now turn to estimating the inner product

and then using these inner product estimates, we will bound the two bilinear forms Bpelow (f,g) and
Babove (f,9), along with some of the subforms of Baisjoint (f 9)-

Note that the small positive constant 7 in the construction of the smooth Alpert wavelets is fixed through-
out the estimates below, and so powers of %} depending on n and x will often be absorbed into the notation
of approximate inequality <.

Q

n 1,77‘

Li(o)

Notation 27. In an inner product of the form (Tsp, ¥, we refer to ¢ as the amplitude function, and to 9
as the pairing function.
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4.1. Pigeonholing into bilinear subforms. Recall the decomposition (with bounded overlap) of the pairs
(I,J) € G x D of dyadic cubes introduced in (1.12),

GxD=P, U |JPm UR,

m=0
where
Py = {(I, J) €G XD :Tan (J) C (I’(Opseudol)} )
P = {(I,J)€GxD:2"M I C S and mapn (J) C @ (2" Chuendol) \ @ (2" Cpsenaol)}, mEN,

R = {(I,J)€GxD:®(I)C man (Cosendo)} -

In treating the below form Bpejow (f, g), we will consider the inner products
(oo rogie) = [ A ) e O AL (€)de = (Toti ) (R (o)
R?’I 1 ’ ’ ’ ’ ’

(ramizmgy = [ [ R @ e a6 de

for (I,J) € Py C G x D, and as in (3.5), we further decompose the index set Py of pairs by pigeonholing
the side length of J and its distance from the origin relative to ﬁ, the reciprocal of the ‘depth’ of the
spherical ‘cap’ @ (I):

= U [j Ped. where

keZ deZ
phd = {(1, J) € Py £(J) =2", and 27 < ¢(1)* dist (0, J) < 2d+1} :
for k,d € Z.
Then we define the associated subforms,
(4.3) Bl ()= . (Tshi M ngn).
(1,0)epy

We decompose the disjoint form Bygisjoint (f,g) into subforms Bhdom (f,g) similar to that done for the

disjoint
below form Byelow (f,g). Recall that in (3.6), for each m > 0, we decomposed the index set

P = {(I7 J)€GxD: 2" C S and mian (J) C @ (2m+1C’pseudOI) \ @ (Q"LCpseudOI)} , meN |

of pairs by pigeonholing the side length of J and its distance from the origin relative to the reciprocal

of the ‘depth’ of the spherical set ® (I):

Pm = U G Prd where

1
(ne

keZ dez
phd = {(L J) € Py 1 £(J) = 2%, and 27 < ¢ (I)2dist (0, ]) < 2d+1} :
for k,d € Z,
and now we define the disjoint subforms,
(4.4) Bt (o) = > (Te A1 L.A50g).
(I,0)eP*

We point out that in those inner products in the disjoint form with resonance, such as when k£ = 0 and
m = —d, we need analogues for smooth Alpert wavelets of the traditional L? and L* estimates averaged over
involutive smooth Alpert multipliers. Finally, we write

upper k d,m lower k,d,m
d15j01nt E :E : z : dlsJomt and Bdlbj()lnt 2 :§ : E :Bdlsjomt

k€Z d>0meN k€Z d<0meN
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We defer the analogous pigeonholed decompositions for the above form Bapove (f, ) until needed, and now
we turn to the four principles of decay used on the smooth Alpert inner products <Tsh?‘;1’", h7}2>, followed

in the next subsection with the interpolation estimates.

4.2. Decay principles. We introduce four different principles of decay in the oscillatory kernel of the Fourier
transform, namely

(1) radial integration by parts,

(2) moment vanishing of smooth Alpert wavelets (for both h’};l’" and h77),
(3) stationary phase of oscillatory integrals,

(4) and tangential integration by parts.

These four principles of decay will be used as building blocks for compound principles of decay, which are
obtained by iterating the exact formulas for each principle, before taking absolute values inside the resulting
integrals, in order to obtain estimates. These estimates are then used with square function techniques as in
[SaWi] to bound the three forms Buelow (f, 9), Bdisjoint (f,g) and Babove (f, g). However, in order to handle
resonant subforms of Baisjoint (f; g), We require an additional decay principle involving interpolation of L?
and L* estimates for smooth Alpert pseudoprojections, that is described in the next subsection.

Our baseline is the following rather trivial L' estimate, which we refer to as the crude estimate,

(4.5) ’<Tsh?;17”,h7};2>’ < ‘hn.717n‘L1(a) 3;7 ~ |||,
(T 835 1500 | < [lartne], HA?ZQM VI |(A ) Contiz]

where we have used (4.2) at the end of the second line.

4.2.1. Radial integration by parts. First we improve upon the crude estimate (4.5) when (I, J) € P(f 0 with
k>0, ie. £(J)=2* namely we show that

(4.6) (<Tsh" L prn ,>‘ SCNQ"“N‘h?;;l”’ | A2
(T 872 £.8500)| < ov2™™ |27 s 2 T (1) (g i)

To see this, recall the change of variables (3.8) made earlier,

(Tshy . w7 / / @RI (3) B (€) dand
n ]Rn 1

//Rn 1 /Rn . PPN (1) 9 (y, A) dedyd),

= d(x)-2(y),
ol (x) = R}, (x) and ¥7 (&) = B}1(E),

. . )\n—l
Py = my 7<Ay,xx/1—|y>ﬁ.
1 =1yl

1 N
9}\> ixP(z,y) _ eiAd)(m,y)’

where

<

w

@

N~—
|

We use the formula

to obtain the equality,

cirb(@,y) )
(4.7) <Tgh” YR ”7 //R I/R s N%( 2) OV (y, A) dadyd),
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which can then be estimated by

n— n ~n
(4.8) ’<Tsh,;,€1’",hﬁz> < ||<P?||L1/ J/ J]aivm (y,A)’dydA
T2 T

et [ [ [0S ‘(mln{ ! 1})Ndyd)\
Ll ‘IT2J 71'1J 5 ’ ’ nﬁ(J)

1 _
(W) 1 ax e ~ 2 T,

which gives both lines in (4.6).

A

Q

i 27kN [P

NN
O by .

4.2.2. Vanishing moments of smooth Alpert wavelets. Now we improve upon the crude estimate (4.5) when
(I,J) € P° with k < 0, i.e. £(J) = 2¥, namely we show that

n—1, n, —|k|k n—1, n, ~ o9—|k|k
(4.9) [(msni b mg)| < Coae mgsto|| ||~ 2 s AT
{20 2307 .25%) | < €27 o ], = 2T () (oomi)

For any entire function f, Taylor’s formula with integral remainder applied to t — f (tz) gives,

4 1 _\K
1e) = Z;jﬂf ) oot [ (gt 0)

1 4 4 ! K K (1 — 7"-)’,V

which shows that for any x € N and b € R, we have

2 (ib)"
ib _ :
(4.10) e’ = ; o R (i),
where
o 1—¢)" b|"
(4.11) R, (ib) = / it (ib)" %dt and |R, (ib)| < (H|+| ik
O . .

We also have

VP bl
(4.12) |0y Ry (ib)] < CESA for 0 </ < &,

K !
DR, (ib) = 0fe® =i%®  forl> k.

Now let c¢; denote the center of the cube J and write,

Kk—1 . 14
e—i<1>(3:)~§ — e—itb(ac)-CJe—i@(x)~(£—CJ) — e—i@(m)-CJ {Z (_1(b (l‘) ) (f - CJ)) + R, (—iq) (a,:) . (5 _ CJ))} )

2!
=0

Note that
1 K
IR, (i (a) (€ — ) = [ TP (i ) (¢ — e LI
0

Since A’} has vanishing moments up to order less than x, we obtain

@13 (Tenpnmgn) / / e @I (@) dal’y! (€) de

[ <x>{/ e +Rn<—i¢<x>-<g—cm] o <s>d€}d$

=0

= [ @{ [ A - el od]) d
S R '

dt
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From the bound for R, in (4.11) with b = —® (z) - (£ — ¢;), we have

[l
) Nt pr 195 e & 'k'”W.

4.2.3. Stationary phase with bounds. Now we improve upon the crude estimate (4.5) when (I, J) € Pg’d with
d>0,ie JCK(I),¢(J)=1,and ¢(I)*dist (0,J) ~ 2¢, namely we show,

71 af 1Y
= (14277 - VI,
e(I)
n—1,n n, < 9—dnzt —d 1 / ‘ n—1n n,n
’<Ta AI;I{ f7AJ;K’g>w‘ N2 2 <1+2 <£(1)2> ) |I||‘]| <f7hI;/<, ><g7hJ;.‘£>
where 0 < 7 < 1. For this, recall the change of variables in (3.8) and (3.9),

<Tsh?;1’”,hf}tz>= / / e PE@ERY I (1) BT (€) dadE
: ; iy _— : :

/ / { / M (x)dm}%? (y. ) dyd,

R ]R'n.fl Rnfl

el (x) = h}, " (x) and ¥7 (&) = K1 (E),

~ )\nfl
I-ly

Applying Theorem 25 with n replaced by n — 1 and ay (z,y) equal to ¢7 (z), shows that the oscillatory
integral

IN

(4.14) ’<Tsh?;;1’”, By

A

(4.15) (Tsh " m)| s

7

where

<

=

<

S~—
\

TooN= [ g @) da,

satisfies
M+1
Itp}],¢(y7 ) %(p P y7 +Z§B("¢ y7 ) m("; )(y7)‘)7

where

oi58n[020(X (1)) F+AS(X (),)

AN
7 A= | — T(X ,
and for 1 </ < M,

i (o F il BOF (X (1))
( ) det B (y)

. » 1 L elX @)
) { [8’” det 0, ¥ (X (y) ,y)} BW ™ o (X (¥),v) 8‘”} det (0,7 (X (y),y)]’
and

RAMED () 3 — (27) eilsen B F+A6(X (1))
e A [det B ()]
M+1

y /}_;1 <iaz,B(y)*1 az>] f (C) grist (ZW> dc,

2\
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and where B (y) = 92¢ (X (y),y), and X (y) is the unique stationary point of ¢ (-, y) in the support of a,

as given in the Morse Lemma, and p = [%1 is the smallest integer greater than %, and finally gar41 (b) =

L[t (b—t)™ dt for b € C. Thus at this point we have the formula,

M! Jo
[ LA eeem o wael 3] ) dis
R JRn—1 Rnr—1

~1
- /R/]R et (¥, ) ¥ (Y, A) dydA

In the case ¢ (z,y) = @ (z) - ® (y) we have X (y) =y and

B(y) = 020 (x) ®(y) lamy=02\/1 — [2]* [a=y /1= |9)?
1 xxt
= | ———Tder———— ey | V1 - Iy

(4.16) <T B B ">

2 3

1 — |z (1 - W)
tr
vy
= Idn—l 2
1—y
so that sgn B (y) = —(n — 1) and
2

S — __Y1y2 _Y1Yn-—1

1-[y|? 1-lyl? -yl

_ y2y12 —-1— Y2 . _yzyn721
det B(y) = det 1—lyl 1—lyl 1—.|y|
2

_Yn—1y1 _ Yn—1Y1 . 1 Yn—1
1-|y|? 1-|y|? 1—[y[?
-1+ |y‘2 - y% - 1’!/,1‘272 —Y1Yn—1
1 —Y2Y1 —1+yl" -3 —Y2Yn—1 (_1)7%1
= det 72 . . = 72
1=y : : 1— |yl
2
—Yn—1Y1 —Yn—1Y1 e 1 o [T i V-

by induction on n.
In particular then, from (3.11) and the above calculation, we have ¥ (X (y),y) = 0, ¢ (X (y),y) and
0.V (X (y),y) =1d,, and so

n—1

2T 2 i[— (n=1)7 1)7\' 2
BN = () T el 1wl ).
which can be written in the variable £ = ()\y, A/1— |y|2> as

n—1 = 21 = 5” 1(\5\ L l)w)hnflm (5/> r_
mhl’m N (5) <|£|> |£| Ik |§| ) 5 (617"’7£n71) .

We compute that for J € K (I) and £ (I)*dist (0, .J) ~ 2%,

A

n, n fn 1 |§|—M n—1, il n,
[(Bigaomoti)] =| [ Bigzonc @izi0e]=| | (a) i it (g ) it 0 0

/n (dlst(IOJ)> M (é")‘ - \/1|7|1[ <|§|> \/171“5) de

iy ()| de ~ ( T

Q

(0,7 VT dist (0, J)
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The intermediate terms mfﬁ ¢ (y, A) can be estimated in a similar way.
7

Next we estimate the inner product with the error term i)‘i;l\f_tl,? o using the bound (3.15),

Ik

n-1 1
<Oy 2 M VT
LY(Rp ) xLoo(Rp—1) — M e(1)*N 111,

‘mﬁgti? N A)’ < OuA T M (1d-a0)Y R

for N > 1+ 271, to obtain

M+1 n,m
(ot )

)

o T\ (i (1Y
(dwt(OJ)) <£<I>2> 1171~ 2 ’ (wf) 17[171,

whereT:N—’%l>O.
Adding these estimates gives,

[ @nnea

n=1n pn,n
‘<Tsh’1;n 7hJ;n>

< {f:wwo 4 grd(egt ) (A)} I
=0

I
which completes the proof of (4.15). Since N — %rl € %Z, we may assume 0 < 7 < 1.

Remark 28. We will only use the case M = 0 of Theorem 25 in the proof of the probabilistic extension
conjecture in Theorem 2, which corresponds to the classical asymptotic formula with just the principal term
and remainder, but with a sharp estimate here on the remainder term when the amplitude is a smooth Alpert
wavelet.

4.2.4. Tangential integration by parts. Finally, we improve on the crude estimate (4.5) in the case k = 0,
d > 0 and m € N using a tangential integration by parts as our last principle of decay, where the supports
of I and ®~! (7, J) are separated by at least £ (I). Let (I,J) € P%? with d > 0, i.e.

2d71 2d+1
dist (i, I) 2 270(I), £(J) =1, and —; < dist (0,.J) < —.
t(I) t(I)

Recall again the change of variable in (3.8) and (3.9),

<Tsh7;1’”,hf}§2>:/ / e PRI () B (€) dadg
n Rn—l

—i T ~n
= /R/R—l/R—le Ad( ’y)ga?(sc)wJ(y,)\)dxdyd)\,

where

o(x,y) = @(z) (),
el (x) = R}, (x) and ¢ (&) = K} (E),

. )\TL—I
1/13 (¥, \) 0y (/\%)\\/ 1- |y|2) ﬁ
1-y

Here the supports of 7., J and I are separated by a distance of approximately 2"/ (I), and £ (mand) < (1),
and this suggests we should integrate by parts in the variables x and y.
So let y; = @71 (Tancs) and v = éj:gl € S"~2 be the unit vector in the direction of y; — ¢y, which is

close to the direction of y — z for z € I and y = ® ! (mané) with € € J. Consider the directional partial
derivative D = v - %, and note that

D3¢ (2,y) = (Dy®@) (z) - D (y).
Since (Dy®) (x) is perpendicular to ® (z) in R™, we have the estimate

|D5¢($,y)|%|1‘—y| ) $€I,£€J.
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Now we compute
Dﬁe‘i’\‘f)(w’y) - —i)\e_i’\(b(’”’y)Df,'q/) (z,y) = —ide~ () (Dy®) (z) - ® (y),

and so

N
( : 1 D;r) e—i)x(ﬁ(.x,y) — e—i>\¢(9€vy)’
—iA(Dyv®) (z) - (y) 7

which gives,

(4.18) (Tshy " ny)
_ 1 T N ixg(z,y) ~n
- /R/wl/w1{<—iA<DV¢><x>~¢<y>DV> e vy ) dudyd

- /R /RH /Rn—l ey { (Di (D, ®) (i) 3 (y) ) N} o] () (1, ) dxdy;%.

This integral can be estimated by

& /R /Rf /Rf (D5 (Dy®) (glc) "5 (y) ) ot

where we have the following pointwise estimates for N =0 and N =1,

n—1,mn ;nm
‘<T5h1;m ’h’J;n>

[ )| dodyar,

n b
o7 (@) S ik
an . 1 R 0.7 ()] |07 ()| [(D3®) (x) - @ (y)]
TP @ e mT NS XD @) 26 T A(De®) () B ()

e v NI

s Na—y Az —y|* ™ A2me(I)L(I) " A (27 (I))?

< 1 1 om 1 1

~ox2me (1 /1 dist (0, .J) £ (I)* /1]

We claim that by induction on N we have

1
)\W

(D eI

(4.19)

N n < 9—Nm 1 " 1
)-@(y)) erlo)| 52 <dist(0,J)€(I)2> i

For simplicity, we illustrate the inductive step in the case N = 2, and compute
1 1
D3 Dy o7 ()
(Dy®) (z)- @ (y) ¥ (Dy®) () - @ (y) '
_ ( Digl (@) ¢f (@) (D) @)@ <y>>
[(Dv@®) () - @ (y)] [ :
(DY)’ ¢l (x) Dyl (@) (D

_ 3®) (x) ¢
(Dv®) () - ® ()] (Dy®) () - @ ()]
Pl @) (D32) (1) 2 () o] (@) [(D3®) (@)@ ()]

[(Dy®) (z) - @ ()]’ [(Dy®) (z) - @ ()"
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which gives,

2
_1 _1 1 )1 _1 _ _1
1 (D”” : )290”(3:) < 1 (W)) ﬁ+( 0 )‘FJHFJ: ’ el
ATV (D) (z)-@(y)) T ~oN |z — y|? |z —y|® lz—y® |z —y*
1 1 1 1 1
5 N2 4+ 4"’
A2\ 22mp ()t T 2smy ()t T 2amp(n)t ) /T

2
< % 1 . L o—2m 1 1 ’
AT 22me (1) /| dist (0, .J) £ (1) |
which is the case N = 2 of (4.19). The general case is similar.
The estimate (4.19) leads to the inner product estimate,

(4.20) [(Tsny )

N -1
= /R/RM/WAALN {(Di(DVCD)(i).q)(y)) }50 x) ‘ﬁu(y,)\)’dzdyd)\
N
_Nm 1 1 ~
< [[ [ (dist(()w])g([)z) 7 |75 )]
N
< 7 (dist(o 3)6(])2> \;mf H@Z(%A)(Ll ~ 2~ NmEd) 1],

since dist (0, J) £ (I)* ~ 24 for (I,.J) € P%%, d > 0.

m

5. INTERPOLATION ESTIMATES

Here we describe the decay principle needed to handle sums of resonant inner products by probability. In
fact the probabilistic estimates here rely only on the transversality induced by the curvature of the sphere,
and not on stationary phase estimates. Throughout this subsection we will use the familiar notation @ for
the Fourier transform of ¢, and we will use the parameter s € N to pigeonhole the side length 27° of a cube
I eg. Let

(5.1) Qlf= Y AYf,  where G [S]={I€G:ICSand((])=2"},
Iegs[S]

be the smooth Alpert pseudoprojection onto G [S], i.e. the pseudoprojections A?m are restricted to dyadic
subcubes I of S at depth s in the grid G. Let ¢ € C*° (R™) be a smooth nonnegative function satisfying

1 if €€ Br(0,1)
(5.2) w(&)—{o if g¢B§n(0,2)’

and set
P (E) =279 (27%),  fort >0,
where we note that the scaling is with respect to 27! instead of the usual scaling ¢. Recall that ® (z) =
(a:, \/W) € S"71 for x € S. Define the spherical measure f1 by
(5.3)
fo(2)= AL (@71 (2)) det 9B (2) do () = <(SW)_1 f, h}g;1> PR (@7 (2)) det 9D (2) doy (2)
and with s understood, we set fo (2) = >;cg.(¢) f4 (2). Note that the spherical measure f§ has mass
roughly ‘<( n) f, h?ﬁl>‘ —s(n=1) and is supported in S*1.
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Here is the model result of this subsection. Note that if f = Q,f equals its the Alpert projection, then
we have,

A QL = Sy Aa (Swn) " QUF = SwpAa (Sen) ! SknQaf = Sﬁ,nAast = S Aalf
Proposition 29. Let n > 2, and let Q7 be as defined in (5.1). Then for p > -2, there is €, , > 0 such
that for every s € N, and every f satisfying f = Qsf, we have,

P
< 9= S€p,n

~ ||fHLP(g'n 1) )

5.4 E* ‘
(5.0 (s Jrsaoe]) o)

where the implied constant depends on n and p, but is independent of s € N.

This estimate is a building block toward controlling the resonant portion of the disjoint form, which
however requires a much larger localization to a ball of radius 22°.

We prove Proposition 29 in three steps, beginning with Plancherel’s theorem in the form of a lemma
that allows improvement of the traditional L? and L* curvature estimates in the presence of probability
and Alpert wavelets. Then we use the scaled Marcinkiewicz interpolation theorem to obtain the desired
conclusion if certain L? and L* estimates hold. Finally we establish these L? and L* estimates to complete
the proof of Proposition 29.

For s <r < 2s, define a fattened n-dimensional measure fg , by

(5.5) for=foxo,= Y foxeo= >, fo, where f, = fixep, .

Ieg,[S] I€g,[S]

We will use the upper majorant properties of L? and L* (we use this latter phrase loosely to denote that
convolution is a positive operation) to obtain Lemma 30 below in order to significantly reduce the norm
ITsQ2 f ||’£p(‘$‘ ) when averaged over involutive Alpert multipliers of f.

Note: The n-dimensional measure f({),r = fL % ¢, is supported in the fattened spherical cap
Iyr = {z € R" : dist (z,Supp fé) < 2#} ,

which for » = 2s is roughly a rectangular block of side lengths 272% x 27* oriented perpendicular to
a normal of the spherical cap Supp fé. We have the estimate,

(5.6) Fa, D] S |(Seafhinh)] 227 1, ().

Lemma 30. Suppose s € N, and ¢ is as in (5.2) above, so that |p,| ~ 1 on B (0,C2%). Then for s <r < 2s,
P T
©| 175 ©F 7 P e =

we have
/.
| melweore - [

Proof. From Plancherel’s formula, we have
© mera= | |f

/,L’fq’ ‘|<P25()| or (6)[* de = /

and using Plancherel’s formula again with the convolution identity f * g = f§, gives
4 _ 2
[ |l mora= [ v, (6)] de
R’n, Rn
A fo* fox @, %0, (8) () foxfoxp, ¢, (§)dE
[T o @ fug s fur @) da= [ [ @

— 2 9
Joos (O] 15 )P de,

— 4
Jor ©)] de.

|s01( I3

de.

)4

Here is the lemma that obtains the required LP bounds from improved L? and L* bounds.
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Lemma 31. Let n > 2 and s € N. Assume that

(5.7) | 7oz, (i S 2l
1
s | ’
<Egg Aam"f@,Qs > 5
Li(An)

Then for p > there is €p.n > 0 such that

holds for every s € N with implied constant independent of ¥ and s.

nl’

P

—
A" fo 26

%
> S 27 % ”f”[,p(s) s

L (1251?1825 * An)

Note in particular that Lemma 31 implies (5.4) in Proposition 29 .

Proof. Combining Lemma 30 with the assumptions (5.7) gives the pair of inequalities,

ITsQifllra(zpigmin.g S
1
1

(Unfl) ?

(8t s (42 Qu) [ o) S 2T Wiy
Indeed,
I7sQ21 Hizwmm < HTsQé’fllE(w@a )= / ITsQLS (O 7 (€)1 755 () de
2
= /R‘ ’Iwzs )I* 5 (O de = / P ( )‘ PAGIRS
2

B H(ng)@v% L2(1851*An) s HQM'L?(S) S ”f”L?(sw

and

fo ITS AT QU pmon,) < Bl [ ITsALQUE (1" 17 ()" e

4
— B [ 4@, )| En @ de =B [ | 3 ar@ni©)] e de
" " |reg,[s]
— 4 — 4
= B [ || X w@n’| © m@re-ng [ || X a@n]  ©
" I€g,[9] P : 1€G;[S] ®,2s
4
— 4
= # [ @b O] de=B [ 4@ @) de
" 1€6:18] R
I e | s(n=2) |7 —s(n—2) || |4
= Bl [ A @ Fan|,,,  S2C I s S 2 1 kacs) -

These L? and L* estimates can be recast in terms of square functions by Khintchine’s inequality, and we
will now show that the scaled Marcinkiewicz interpolation theorem applies to obtain (5.4).
Indeed, by Khinchine’s inequality, the above bounds are equivalent to

||ST,sfHL2(,\,,L) S 23 Hf||L2(an_1) )
S

(Unfl) ’

||ST,sfHL4(lB(0,2S)>‘")
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where St s is the square function defined by

2
Srof=| Y [TsALM S
Ieg,[s]
The sublinear operator St is actually linearizable since it is the supremum of the linear operators L, f =
Tg Zlegs[s] Uur A?;;l’" f taken over all vectors u = (UI)IGQS[S] with |u,. = 1. Then by the scaled
Marcinkiewicz theorem applied to St s, see e.g. [Tao2, Remark 29], we have

HST,Sf”Lp < C«n,p2§(179)275n4_20 _ Cn,ng( (277))2 gn— 2(27%) _ Cn7p2755"4’,

n—2 4 1 4 n—1 2n
2 )L ) <25 -2

for p > % Another application of Khintchine’s inquality converts this bound back to the expectation
bound,

where

1
P
(E’{SS[S] ||Ts,af||ip(13<0125)>\n)> S Cn,p2_“’€n,p HfHLP(an_n .

Thus we have

2QS[S]

Tsad s @ sz

which completes the proof of Lemma 31. |

Lr(B;)
It remains to establish the improved bounds in (5.7), which we accomplish in the next three subsubsections.
Once this is done, the proof of Proposition 29 is complete.

5.1. The L? estimate. We first compute the norm of Ay, from L? (S) to L? (|g/0;|2 )\n), where Ags f =
We have

—_—
f@,Zs-

Aaef s(zpny = [ |Fom ©) B @PdE = [ foare,(©) Foarios €€
Z /f@zs*@s )f@zs*Ws(f)dgz Z /fmS*st (fq{(,zs*@s)(x)dm'

I,KegG,[S] I,Keg;[9]

Noting that the supports of fdl;,Qs * g and ngs * o, are essentially disjoint unless I ~ K, and recalling the
definition of Z,-+ in Note 5, we can use (5.6),

[, Gl s|(Sapmn)| 251, ),
to estimate the above expression by
2
(58) It Bempny S 2 [ 1fhaeves©f d
ICBog
n— 2
S X [ |[sehrt)|err s, s de
1€g.[8 " R"
—1 n—1 2 n—1 2
’S’ Z ‘<Sf”v»?7f’h1;n >‘ / 2°2°7 11'275 (f)‘ dg,
I€gsS] "

where we have used the fact that the positive measures ’112_25 * @S‘ and 27°11 are supported in roughly

2—s’

a common cube of side length 27°, and have roughly the same mass, i.e.
(5.9)

[an e ©d= ([ 1 @) ([ e©d) = [ 1. @dxe [ 1 @
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Then we continue with

— 2 Sosi=1 2
Ao Iagapny S 2 [(Senrnih)| (22°7) 15
Ie€gs[S]

2
2 3 (S bt S 2 IS sy = 2 I es) -

Ieg,[S]

This proves the first line in (5.7).

5.2. The L* estimate. Now we turn to computing the norm of Ays from L (S) to L* (R™). We have

4
HQZflliz;(An_l) =/Rn_1 Z <(Sm)*1 f,h?;;1>h?“:1,n (z) | da
USAE]
4
4 4
= (Sk, )‘1f,h".;1 / Ry ()| da
IE;MK N
4 1 4 1 1> 4 1
~ ‘ (Sn, )71]“,}7]”.;1 ‘ () |I|: ’ (Sn, )7 fahn; 11
IEQZS[S]< ! " > vl IEQZ[S]< ! " ]
_ s(n—1) -1 n—1 s(n—1)
- Ie%;[s]K(SM) Fi e >’ =2 ‘fw G.18])

where f = {<(S ,77)71 , h?;1>}leg . is the sequence of Alpert coefficients of (S,.w)f1 f restricted to G, [S].

Recall that H ) f’ o(s) R~ Hf||L,,(S) by Theorem 11.

Next we calculate the L* ()\,,) norm of Ay, f:

4
— 4
||A25f||i4(>\n) :/ ’f{),Qs (f)‘ df:/ Z f<1> 25 dg
R n Ieg S]
2 2
= / Z f@zs f<1>2s(€) df:/, Z fé,Qs*fli{,Zs(g) de,
" |1,7€6,19] R 11,7€0,18]
by the Fourier convolution formula, and then by Plancherel’s theorem,
2
1A2s Il a0,y = / > fq> 2 ¥ fRos ()| dz= ) /f¢> 25 * [325 (2) Fos* fi.25 (2) d
R™ \1,J€6.(8 1,J,I',J'€G4[8
4
Now we compute the average Egg A:””’ f H } over all involutive smooth Alpert multipliers Ai”"’,

where remembering that the functions qu>,25 have the n-smoothness built into their definition,

Aa“f\

LA(\y)

= Egg Z Z Egg / (aff<II>,2$) * (ang}{,Qs) (2) (al/fq{:zs) * (aJ/f‘:g:QS) (2) d=z

I,J,I',J'egs[S] (aj,all,all,aJ/)E{fl,l}gS[S]

Il
pO

Z + /f@Qs*f‘i’2b Z) @25*f¢25()dz£51+€2a

1,0,I',J €Gs[S]  I1,J,1',J Gg [S]
I=J and I'=J" I=I'" and J=J’
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since the only summands that survive expectation are those for which ajajaj-ay is a product of squares,
i.e. the factors occur in pairs of equal sign +1.

Remark 32. This is the key consequence of taking expectation, and is the only place in the paper where
it arises. Note also that in n = 2 dimensions, Fefferman made the critical observation that the supports
of the convolutions f<II>,2s * f(L}{,Qs are essentially pairwise disjoint, so that the L? norm squared of the sum
is the sum of the L? norms squared. This then led to the resolution of the extension problem in dimension
n = 2. However, in higher dimenstons this observation doesn’t generalize in a simple way, since there is
an (n — 2)-dimension sphere contained inside S~ whose pairs of ‘antipodal cubes’ support functions whose
convolutions all occupy the same space. The pairs of distinct antipodal cubes vanish under expectation, which
leads to a favourable L* estimate.

We have
Ey =2 /f@Qa*f‘i’Zs()f@Qs f@zé()dZ—Q Z /|f¢>2s*f<1>zs | dz.
1,Je€G;[S] I1,Jegs[S
Since the supports of fg ,, * f§ o, and fé:Qs * f(II):QS are disjoint unless dist (I, 1’) < 1, we also have
& =2 /f<1>25 f@%()f@zé*ﬁbzé( ) dz S Z /|f¢>25*f<1>25 | dz.
I,I'eG[S] Ieg,[9]

Altogether we obtain

29 ||A2sf||L4(,\ )N Z /|f<1>2s*f<1>2s | dz

I1,Jeg,[

/|f<1>2$ f<I>2€ | dZ+Z Z /|f(1{,28*f‘g723(2’)|2d2
Y2t

I,JeGs[S]: dlbt([ J)<2-s t=0I,J€Gs[S]: dist(I,J
= U+ Z 0,
t=0

Now note that the L' norm of f§ ,, * f{ 5, is essentially

Q

17 el el e~ [(Se)™ F£ohorin) ((Se) ™ £l )| WAt I s
’<( an) f7h1m><( nn) fvh.]l€>‘ S(n71)7

and since the volume of Ry (I, J) = Zy-2s + Jo-2s is essentially 27" dist (I, J), we have
|Rsyii (I, )] ~ |Ros (I, J)| = 275" dist (I, J) =27°""*  for dist (I,.J) ~27F,

where the first equivalence is a simple consequence of the geometry of the situation. Thus we conclude that
for dist (I, J) ~ 27,

A

{(Sua) ™ o) (S o) 20D
HK(SH,n)l s h1;5> <(S,.i7,7)*1 1, th>’ g—s(n—1)

Hf<II>,25 * f‘gﬂs”Ll

1
— 1
2-sn dist (I,.J) "))

Q

Lt

Since there is A > 0 and a rectangle Ry such that ’fé’%’ < Alg, and Hfé,stLl ~ || A1g,| 1, which again is
a simple consequence of geometry, we then deduce the comparability of the integrands for dist (I, J) ~ 271,

P B () [((Sn) ™ £ohr) ((Se) ™ )| 270 st 10 ()

(Sa)™ Fohrin) (S ™ Fohrin )| Lrrr) (2)-

S

= R ) Gy . ()

— 28+t
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Thus we have

)OLZEEED SN DR BV PR SO
t=0

t=01,J€G,[S]: dist(I,J)~2-t

225+2t

2
1r,.(1,0) (Z)’ dz

A
B
(]

28 |((S) ™ f ) ((Sun) ™ fhn)

t=01,Je€G,[S]: dist([,J)~2"t

2
| Ras (1, J)]

(Swa) ™ Folorin) ((Sn) ™ Fohgie)

A
NE

t=0 1,J€G,[S]: dist(I,J)~2~¢
S > 3 o—s(n—2)ot ‘<(Smn)71fa hm> <(Sm,n)’1f, h‘]m>
t=0 I,J€G,[S]: dist(l,J)~2"t

where we have defined €2; to be the bound for ¥, obtained above.
Now recall that

2 s
= E Qt,
t=0

4
1Q s,y = 27 S (S LR
I€g;[S]

Thus for 0 < t < s we have

Q, 5 Z 275(77,72)215 2

1,J€G[S]: dist(I,J)~2~t

((Se)™ oot ) (S ™ i)

4
S 2Dy > ((Sea) ™ £ )
1,J€G,[S): dist(1,J)~21
4
S 275(n72)2t2(37t)(n71) Z ’<(Sn,n)_l f, hI;n> — 27t(n72)275(n72) ||ng||i4(s) ,

Ieg,[S]

since
volume of annulus ~ 2-t(n—1)

9] dist (I, J) ~ 27"} =~ ~
#{J € G, [S]: dist (,J) } volume of cube 2-s(n=1)’

which then gives

Z\I/t S ZQt S Z 2~ Hn=2)gs(n=2) ||ng||i4(5) ~ 270 ||Q2f||i4(s) :
=0 =0 =0

Similarly we obtain
s(n— 4
w2 D QIf| L

and adding these results gives

Egg A2S~A§N'nf

4 < 9—s(n—2) n 14
e, ST QU sy

which is the second line in (5.7).

6. CONTROL OF THE below FORM Byelow (f,9)

Combining the above principles of decay, and staying the introduction of absolute values until the very

end, we will be able to obtain estimates on the inner products <T5h7};1’"7h7};z>, which will lead to the

following form bounds for some fixed § > 0 depending only on n and p,

d -
Bh (£.9)] S 272D 7 gy, forp >

We will begin with the two easier cases involving d < 0, since each of these cases requires just one of the
decay principles described above.

Later we turn to the subforms involving d > 0, which are harder to control as each of them requires
combining two of the decay principles described above.

2n

n—1
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Remark 33. The next result shows in particular that the basic form Bbclow (f,9) is bounded using only the
crude estimate (4.5), and the strict restriction to p > =% . See also the Direct Argument in Subsubsection
9.2.1 for a much shorter proof of essentially the same result

6.1. Subforms with k£ > 0,d < 0. Here is the conclusion of this first subsection.

Lemma 34. Fiz s € N. Then

6 1 ZZ‘Bbelow g ‘

k>0d<0

2n
o forp> 2

(S 1

NI P

k>0d<0 (1,J) epk a

To prove Lemma 34, we just need the estimate (4.6) that used radial integration by parts, namely,

KTSh” L h"’7>) < Cﬂ*”‘hﬁj’"‘ | =2 N,

n
K

" k> 0.
Lt g -

Let I,, = (1 4+ n) I so that Supp A?;l’"f C I,,. Note also that |I7,| ~ |I|. Then we have from (4.6),
ol ¥ (marras £ o ([ sl

(I,)epy?

ATV (@) da | 1, () |A
(/] 1) 0

(I, nHepy?

2—kN/n 3

= IGIES
(I,J)ept
? 2
<o [y ( [ |iats @) o, (5)) POV EIIGINS
"\ aperps N (1.)ePg
2\ ? v 9 & 7
sl [0S ([lamrwlen,©) ) ) | [ S jamee]]
"\, sepke "\, epke
= 27N,
where
e[| X Jamee) e[ (XS X 1)janme)] «
n (] J)e’P(l)‘ q Rn JeD Ieg: (I,J)E'P(I; ,d
We now choose a dyadic cube I; € G that approximates the spherical projection 7.y, (J) of J. So fix

J € D and let I; € G satisfy
el (Tean (J)) < L(15) <l (man (J)) and Iy C wan (J),

where 7.y (J) is the spherical projection J onto S"~!, and where ¢,, > 0 is chosen small enough that such
a cube [; exists.
Now (I,.J) € Py? if and only if

Lot

2d71 2d+1
7TtanJ C [} (Cpseudol) and W S dlst (O, J) S é (I)2 ,
which is essentially equivalent to
2d—1 2d+1
I:)’ﬂ'tanJDIJ and WSK(I)S m

Thus for fixed J € D, where

Dy={JeD:L(J])

=2,



54 E. T. SAWYER

d+A

—d A for

the set of cubes I € G with (I,.J) € Py'? is contained in the finite tower of dyadic cubes {x®)1;}
some fixed A € N. It follows that Z[eg: (L 1)eptd 1 < 2A and so

’

o2 = [ X | sts/n<2 2A!AJﬁg<§>\2>2dfsg’;;/,

k,d
(1,0)eP; JEDy

by the square function estimate (1.8).
We turn now to estimating I';. Since the cubes J,, in Dy, have bounded overlap with measure roughly 2kn.

2\ %
/ </ ‘An 17/ ‘dleW (g)) d§
(1,J)e
2
(/ A7 )] d ) }u, © ] dg
JeD: | 1€6: IJ)ePkd
>
2
2k 3" 3 ( / ’A?ml’"f(x)‘d:v>
JEDL \1eg: (I,J)G'P(’)c’d Iy

(6.3) XA

(NS

Q

L
(/ a3 )] ) 1y, (6) de
JEDL | 1€6: (IJ€73

(NS}

%

Now for each fixed J € Dy and I € G[S] with (I,.J) € P&?, we have

0(J) = 2F 0(I1)?dist (0,) = 2%, Tand C @ (Cpseudol)

oy 2t
t(1y) dist (0, 7) — dist (0,.])’

Q

14 (’TftanJ) ~

which implies

2

7Ttan
() =~ — 95" /I 0(Iy)
(D) dlst( ) 7)

oI 29" 1
logzm log, €(IJ)N<d k— Ingﬂ( ))

R

Thus with d* = 1 (d k—1ogy gy

2\ % A 2
—A Tl'("L)(IJ)77

IeG[s]: (I J)ePk o ( I s=d*

< (4)F > (/I\A (@) d )pw (/ N Ix)p

I€G[S): (I,D)eph I€G[S): (1 J)EPY

) and A as in (6.2) above, we have for each J € D,
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[
ot

Altogether then,

(6.4) I?

A

DI (/ \A?J”f(m)jdx)p

JE€Dk 1€G[S): (I,])ePk

b
2

IN

LS |1|5</ IOl )

JEDk 1€g[S]: (1,1)ePy

Q

P

2

okn E E 1 |I|p<|1_|/‘ JAV 1" ‘dx) .
k,d n

1€G[S] \JeDy: (I,1)eP}

Now recall that Py = {(I,J) € G X D : mgan (J) C P (Cpseudol) }, and define
K1) =J{J €D : man (J) C @ (Cpsendol)} -
Now for fixed I € G [9],

(6.5) # {J eDy: (I,J) e ngd}

~ 27kn |]Cd (I)| ~ 27kn (

2—kn 2dn _ 2—kn2dn () .
g([)n-‘rl |I| )

2d71 2d+1
where ICy (I) = U JCKI): <dist (0, J) < ,

and so we have

le) 5 2k71 Z (#{JED/C (I J)E'Pgd}) |I|P<I ‘/ ‘ rL lnf‘ )
Ieg[s]
SR '”pﬂ< / 27 ’"f\)
Ieg[s] |I’1|
= / Z |[|p——1< /’ AR 177 >2lf(x)dx
Ieg(s] |I|
< om /S <|I|/’ ’nf‘211($)> dz ,
Ieg[S]

if p > % Now using Holder’s inequality with § > 1, and the Fefferman Stein vector valued maximal

inequality,we can continue with

6o T 5 | ( i [, 8 )gdean/S<z (a]azze]) <z>>gdx
Ieg

Ieg
S 2dn/< agtmgl ) dz S 2" IfI%
S \reg

by the square function estimate (1.8). Thus we have proved,

below

Bl (£.9)] S 2725 £l gl for k> 0and d <0,
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which gives

2n
> (B, (129 S Il gl e+ torpz 2

k>0d<0

6.2. Subforms with k£ < 0,d < 0. This case also requires just one principle of decay, but this time we use
the moment vanishing decay principle instead of the radial integration by parts decay principle. From (4.13)
we have

<Tsh" b h”’”} / e ey py b (:v){ / Ry (—i® (z) - (€ — 1)) Wy (€) dé} d
S n

and then from (4.14), we obtain the estimate,

n—1, n, n—1,1 7CJ)| n,7
[(zah o, ) / B ’/ n+1 Wy (€)| deda
S D) Nl 1950~ 27 M/ 1]

The proof is now virtually the same as that in the previous subsection, but using the above estimate instead,
and results in the bound,

IN

k.d _ dn
‘Bbelow (fa g)‘ 5 2 lka P f”LP HgHLP’ ; for k <0 and d < 07
which gives
2n
>3 [Bbd (9| S Wl gl o forp>

k<0d<0

6.3. Subforms with £ < 0,d > 0. Here we will use the vanishing moments of hf}: together with stationary

phase. In the case k <0 and d > 0, we have from (4.13), which used the vanishing moments of hr}z,

(Tshi 7 w0 ) = /S T Y (@) { [ B (i (@) (€= en) R () d&} dz
and using the change of variable & — (y, A) in (3.9) with ¢; = A® (y;), this can be written,
(Tshi . m)

/n {/S e*iA¢(x’yJ)h7]L;;1,77 () R (—iA® () - (D (y) — P (y1))) dg;} h?,z (AD (y)) L/\n_ld/\

V1=l

dy

= [T, V0 ) <=
nn V1-lyl?
where
I’)] (yJaA):/eii)\(ﬁ(x’yJ)@? (xay7y.]) dl’,
YR S
and
¢l (@yry) = hiy (@) Re (=A@ (2) - (D (y) — @ (y)) = hy, " () Ry (=i (2) - (€ = e7)),
1 ) 1— K
R (i) = / e iy L0 dt‘ﬁ'bl,
0 .
! e (1=t e
RO = |[ e ) ] s

and y; is the unique point in S such that c¢; = A® (y;).
This time Theorem 25 with M = 0 gives the asymptotic expansion,

T (N =P~ wrN)+RY (),
P70 P10

I8 I’ 4Pla
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where
o\ 2 isgn[020(X (ys),y0)]| FHAS(X (Ys)ys) ~
v =) o1 (X (43)40,9)
19 A V0026 (X (y1) ,ys)]
and
" 27\ B eilsen Bun) §+Ae(X (v.),y)]
o - (5)
50}’@( 72 A det B (y5)
1
10, B(y‘;)f1 8z> tr -1
L [ [ B
x/]-'z ) f1( R i ) d¢,
where
1 1
oy ith 1 (1—1)
R]_ (Zb) = /0 € (Zb) mdt, for b € R,
and

—

e (YN (=) u0,y)
[(zy1,y) = Jet [0, 0) (02 ()]

We can rewrite the principal term as

o st ot sen[02(X (y1),y.)]| F+A(X (y.1),9.0) =
" 7)\ = N X ’ ’
v, 000 = (F) o & X W) v1.0)

wl¢
27\ 2 (n—Dn 27
()\) e N = lys Pl (v, v, y)

n—1
e R il <2”) T L < < 45’)
€l €177 Nleal fes] ™ €]

and the remainder term as

n—1 .
2) = Z[sgnB(yJ)%+)\¢>(X(yJ),yJ)]
9‘{(9 (yJ, )\) = (ﬂ-> €
A [det B (y)|

R
></.7-'z_1

Now we compute that for z € I and y € myanJ,

i0., B (y;) ' 0. r -1
< 5 >] 7 © R (—ﬁ Bl) C)dc.

61 1R @6 - S P ) - )|eos( L@ 26 - 2w S g
o)

< W) N>
|Ndist(0,J)’ ora =4

and |0 (z)- (@ (y) —®(ws))| < |12(y)—®(ys)

where we have used that

. W)

~ dist (0, J)’

cos (£ [ (z), @' (ys)]) = sin (L [® (2), D (ys)]) S L(I).

‘(I)(y)_q)(yJ)‘ 5 E(Wtant})

cos (£ [® (z),® (y) — ©(y1)])

Q
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The modulus of the inner product <£]3;7, o h7}2> is thus bounded by,

’<‘B@’¢,h322> <[ | @mre 'd§< Hap o
s (distlo,J)an‘;}] wﬂg (distlo,J>"2)l 1|I| UESEE‘JIRH (—iA® (z) - (@ (y) — @ (y)] VI
< (i) o (0 = () (0e0) v

n—1

= ! (LD Ny w-digtgtiie (L) T
<£(I)Qdist(0,<])> <dist(0,J)> C VI~ 2702 (dist(ovj)> 1171
S e,

£I)
since T (0] <1

Now we use (3.15) with M = 0 to obtain that for N > 1+ %, we have,

’%(ij , (f)‘ soT T ad-a,)N ¢
Prs

LY(Rp)x L>=(R7) ’

where

1 (@, 0,) = W (2) R (—iA® (3) - (® () — @ (1)) -
)—

With R =R, and S = A® (z) - (P (y) — ®(ys)) we have
(RoS) = (R'09)¢,
(RoS)" = ((Ro8)S) =(R08)(5) + (R o8)S"
(Ro®)" = (R”o<1> )) (R 08)S")
= (R"0®)(S)+3(R"08)S'S" + (R 0S5)8",
etc.

Convention: We use the arrow — to denote the assertion that a term on the left side of the arrow
gives rise to the factor on the right of the arrow in the estimate.

With this convention we have that
LD\
(0) ZA)RAE)
RoS — <dist ©0,0))
and SU2)  —  1(J),

so we conclude,

o — (S25) .

and

R O B
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and
(eI DN, o (D)@
(FoS) H(dis‘c(O,J)) Z(J)3+<dist(0,J)) € +(dist(o,J)) €
(L) () (1) ()N

( 5 (0, J)) ¢ {“‘”2* (dist(O,J))g(J)+ (dist((),.])> }
NN, (1) (0 N (LD e\ s
= (dls €00, J)> ¢ {” (dist(O,J)) + (dist (O,J)) }’“ (dist (o,J)> ¢

In general, by an induction on ¢, we have

r—L K—2L
0 _, (t()ed) 0 ¢(I) " <<
(RoS) (dist on) ‘Y =\gson) W 0st=w
Thus with ¢ = ¢} = h(RoS), where h = A" and R = R, and S = A® (z) - (& (y) — ® (y)) are as
above, we have
1

B 75 (g(ﬂ))j

and (Ro S)(Z)

Altogether then,

utnesyentnesy— o) () e () o

K k—1 K k—1
~ Vit (@ow) Ammmes )= (@os)
and

¢ =h"(RoS)+2h (RoS) +h(RoS) .
— gnlm@m) (@om) 0w (wn) @em) o
’ 2
st

7 (@) O
(i) {(a) () + () (i) +)
o

¢ (J)n ( ) )HQ
VI \dist (0, .J) ’
and thus by induction on ¢, higher order z-derivatives of ¢ of order ¢ satisfy,

()" (e
Ll (e, ys) = o — NG (dist(O,J)> '

—~
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Thus we estimate the modulus of the inner product <,‘ﬁ(l) (y,A), hf}z> by,

»l¢
</

) [1a-a.)" 5
2

(6.8a) '<iﬁ(in) (¥, ), h7}32>

‘P17¢

<
~ (dlbt

0,J
() (dlsiggz))”‘” T

n4l

1 ’ K n+1 t(I) S
(M> (oo™ () VAT

% dist (0, J)

R (&) h (5)‘ dé < ‘ R

w0 oy

|

n,n
hJ'H

L

oo

Vi1

LY (Rp)x L (R7)

Q

K—2N
g~ 43" 9kl {em”“ (””)) } VI S 27255 27 M= /1],

dist (0, J

if we take K > 2N. Recalling that we required N > 1 + "T_l = "42'1 above, we see that we must take
k>2N >n+1.
Combining the two estimates for the principle term and the remainder term, we have

n, (1) n,n
P h_g>+\<mﬁ h>\
’< er0 YR i
VT + 2745 27 ks T

when £ <0,d >0, N > "TH and k > 2N. We record this as

n—1,n pnn
‘<T5h1;n ’hJ;/$>

n—1

< 20

(6.9) (Tshy w5 27 2 W T
Next, we will use the estimate (6.9), in the argument we used above to bound Bgﬁow (f,g), to show that
2n
Bl (9)] S 2792795 ] gl for all k< 0,d >0,

Of course we now have d > 0 instead of the opposite inequality d < 0 used in the previous argument, but
we will see that much of the geometry of the decomposition remains the same.
For k <0 and d > 0, the estimates (6.9) imply,

it =] 5 (monroy|-| X (maerse), (o)

(I,J)ept (I,J)epk?
c 5 | f ool {2 ] ol
(I’J)epg,d |I |J JIn
s L) {
s | L @) 8 )]
" (I,7)epkd avaed
< 2Ty / { [ iz @)a }\Aﬁzg@)(dg
" kd



PROBABILISTIC FOURIER EXTENSION 61

which is at most

9—d"5t 9—Ikls /n (/ ‘A?nl’”f ’ ) > ‘Amg(f)fdé‘

k,d
(I,))ePy (I,J)ePy

S

ya
2

2
s w0y ( [ 1 “’f(sc)\dxh(f)) de
(I,D)epkd In
, 1
P p’
9 2
[ X |aneef )
(I,J)eps
= 27 Hl—‘lrg.
We have
2 % 2 7/
rg:/ > |ane@) daj:/ 3 S ] |ane@| ) an
"\ nerp " \eP \icg: (1yep?

and now we repeat some of the geometric constructions relating to 775 ‘4 from before. Fix J € D and let
I; € G satisfy

enm1 (J) <L(Iy) <m (J) and Iy C 7y (J),

where 7 (J) is the spherical projection J onto S*~!, and where ¢,, > 0 is chosen small enough that such a
cube I exists. Now (I,.J) € P4 if and only if

2d71 2d+1
J C K(I) and — < dist (0,.]) <
t(I)

which is essentially equivalent to

2d+1
I>mJ DIy and 2d15t (0,J) dlst(O J)

Thus just as in the previous argument, the set of cubes I € G with (I,J) € P(I)c’d is contained in the finite
tower of dyadic cubes {W(k)I.]}Z:dA_A for some fixed A € N. Tt follows that ), .. (r,necte 1 < 2A and so

’
p

= | X |s@]] s /7L<22A1Atizg<>12)2dw5|ali;f-

0,0
(I,J)ePy JED
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We see that on the other hand, since the cubes J in Dy, are pairwise disjoint with measure 2*"

/R ( </ ’Ayﬁlnf ‘x> 1Jn(§))2d§
(1,J)ePl I

nﬂln 5 (©) ’
. (;;k{[eg IW*,(/ a7 (@) d )} 5) &
/"J;k {Ieg (I,D)e 7)’“d</ ‘A?Kmf ’ ) } o (€)de

D

Iy

%

o A (@) ) ;
s s () femsls

JEDy, 1€g: (I1,7)

Q

Now for each fixed J € Dj, we have with A as above,

2\ * 2\ %
( Z (/1 ‘A?;;l’nf (x)]dz> ) < ( df (/ﬂ(s)(” ‘AZ(S)l(’?J)Wf(m)‘d:Q )
IeG: (I,J)ePy K smdo A Dy
/‘A?Hlmf ‘ > ~ (/ ‘A?Kl’nf ’ )

Ieg: (I J)e7>

< (24)F7 (
Ieg: (I, J)ePk d

Altogether then,

A

Mos oy (ot olar)
J€Dx Ieg: (IJ)EP“ Iy

> 2 )% (/ a3 @) d )

JEDy, IeG: (1 J)eph

(M)

IN

P
2

= 2’“”2( > )'”p<|z|/’ ’d$> ,
1€G \jeDpy: (I,7)ePk

and since

# {J €Dy: (I,J) € P(’f’d}

n—1

2—kn |’C (I)| 2—kn 2d / (I) l 2d 2—kn 2dn 2—kn2dn ( 1 ) nir}

~ d ~ = — R ;
((1)? ]

2d71 2d+1
where Kq(I)=<¢J CK(I): < dist (0,J) < ,



PROBABILISTIC FOURIER EXTENSION 63

we have that

f g Y (#{rem; <IJ>e7’5d})'”<|f|/| By f @) d )
Ieg
< sy (i | ool )

p

- /Z‘”p_*_ <|.r|/\ A @) dw>2 () dz S 27 115

Ieg

provided p > %, using the the square function estimate (1.8) as in (6.6) above. Thus we have proved,

k,d —d2=L 5 |k|k n %
Bl (h0)| S 27T 2 M (20) 2 £, gl

< 2T £l gl fork<0,d 20,
and so
>3 Bl ()| S D02 S 2 T gl S 11 g gl
k<0 d>0 k<0 d>0
provided p > ngfp and k > 1. Note that we only needed stmct 1nequahty p > =5 in this last line. Moreover,

the previous lines of argument can be simplified when p > = - see Subsubsectlon 9.2.1.

6.4. Subforms with £ > 0,d > 0. Let 0 < ¢y < 1 to be chosen sufficiently small at the end of the
argument. We will consider two cases depending on whether ¢ (.J) is larger than dist (0, J)° or smaller than
dist (0, J)°, using radial integration by parts in the first case, and moment vanishing of A;’! in the second
case. Statlonary phase will be used in both cases as d > 0. After dealing with the two cases separately, we
will complete the estimate in the case k,d > 0 using square function techniques as above, but this time we

6.4.1. The case ¢(J) > dist (0,.J)*°. We take both k and d to be nonnegative, and begin with the radial
integration by parts formula (4.7) to obtain,

ixe(z,y) gp}’ (Jf) d zon ) dud\
/000 /{/ 7¢(x,y)z z 0 05 (v, A) dy

N
/( | [ T (00 0505 (0.3) d,
0,00 ’

which is a sum of oscillatory terms having the form of (4.16), but with amplitudes

n—1mn pn,n
<Tshl;n 7h’J;n>

T () = 1)
QOI( 7y) ¢(x7y)z

in place of ¢ (), which are then paired with functions 8@3 (y, A) in place of @7}7} (y,\), and where we can
take Z € N to be a large positive integer depending only on n.
Now we proceed by treating the integral

/000 / 3,\7/)J(3/a A) dydA

as in the previous case where k < 0 and d > 0, but with the new amplitudes ¢} and pairing functions

8,%17)3 (y,\) as above.
The end result is that we will obtain the estimate,

)

(6.10) Bl (£:9)] S27927 | f 1 llgler  for k= 0,420,

below
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for some § > 0. Indeed, after applying Theorem 25 to Iﬁ B (y, A), consider first the error estimate (3.15),
I
which shows that

Id—A N @?(x)
( ) ¢ (z,y)”

)

(6.11) ‘9‘{(1) (v, )\)‘ AT
SDI’ 1(@n—1 0o n
LY(RE)xL (R'E’y] i)>

while we have the following estimate on the pairing function,

o7 | 5 (705)

When the z-derivatives in (6.11) applied to the amplitude

T 1CO N
#1 () o (z,y)”  ¢(zy)”

all land on the function h?;l’" - which is the worst case - we obtain from (6.7) the estimate

e (@)w VI

Ll(R;f‘l)XL""( (vs. y))

(1d—Ag)N B ()
o (z,y)7

This then gives,

1
/( - /S R (5, N) 070 (y, \) dydA
,00

n+1

(o) () V(o) V91
1 &R 1 \2V- (n+1) 1 z
(craann) Gm) () Vi

i 1 2N —(n+1) e
S 2 2 m 2 VI,

where N > ”TH, just as in the similar calculation in (4.17). However, we can choose such an integer N so
that N < 2 41 = 243 " and so we get

2N—-(n+1)<(n+3)—(n+1)<2

and obtain, using our assumption ¢ (.J) > dist (0, J)°, that

_gner 1
S2 4% WQ kZV|I||J|

= o 2ok T 2 dist (0,.0) 27 T

e(

225 dist (0,0 277 %) /T < 27252 0 %) T,

~n
/( ) 9%533, (5. ) L (9, 1) dyd
0,00

IN

provided N < ”TH
On the other hand, the modulus of the principal term B, ¢ (y, A) is bounded by a similar expression
since there are no z-derivatives of the amplitude, and so altogether then we have the inner product bound,

Ty, (0 N OFD) (4. X) dyar| S 279727 (%=%) /T
S I

(0,00)
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6.4.2. The case £ (J) < dist (0, J)°°. Recall that both k and d are nonnegative. The case here is handled by
using the argument of the previous subsection that involved moment vanishing of hf}z and stationary phase,

but now we exploit some additional decay residing in a factor m. Indeed, we will show that in this
case,

< 2=y (&) T

270 W N 070 (y, ) dyd

(0,00)

We take M = 0 in Theorem 25, and as before consider first the modulus of the inner product <‘}3@ y h32>
I ’
with the principal term ‘Bﬁ o Arguing as before, it is bounded by,
I

(w502}l <

B

Pr:P

@ ni @] de < [,

L

5 1 \T 1 ,
: <dlsto J) \% V] 5<W> s IR (=0 ) () = (1) VI
()¢ LT (eemy
< (wm ) 1 i (o) V- (W> (t0.5) VI
N (ﬁ dlst0J> (dlst0J> COT VI
< 27 ( %) I][J] =2"%">2 e (1-25) 1I1]7].

since dlft((g) 7 < dm(o 7 <4 (J)fi under our assumption that ¢ (J) < dist (0, ).

As for the remainder term f)%(in) . (y, A), from the first four lines in (6.8a) we have
Prs

. 1 % E(J)K E(I) K—2N
- (dls t(0,. )) dist (0, J) <dist(0 J)) 11171
Sy ] = 2 o ) T,

if we take k > 2N. Thus altogether we have the estimate

< 902 g (1) I = 242 2F (%) T

< 27

U
T, (0, A) 0500 (v, A) dyd

(0,00)

sincefi(l——)</@ gandkzo.

6.4.3. The square function estimates. From the previous two subsubsections we have the estimate,

< g-agt (M(Z%)m’“(“)) 7] S 277 27 M s ) 1] 1J]

T, (W, N) 050 (. A) dydA

(0,00)
with

1 1
'Y("@afo,Z)Emin{Z_ —KL}
50 o

which we note can be made arbitrarily large by taking k < 5 < Z, but we will only need v (k,£0,Z) > 0
below. Now we apply the previous square function arguments to obtain (6.10) for some ¢ > 0 by choosing



66 E. T. SAWYER

Z sufficiently large depending on n. Indeed, following the argument in the previous subsubsection, we have

2
B, () sz e [ S (/ A7 @) d ) > |anne]
(1,J)ePy?

n (I,J)epk?

[N
=

2
< 9—d=5E 9k (r,20,2) / Z (/ ‘A;I;;l’"f(x)’dlen (5)) d¢
" \u,peprd \Mn
/ 4
9 2
AL Janmeef ) a
"\, nepid

Q—d% 2—167(&6072){‘11*2.

and ) cq. (1,7)ecd® 1 < 2A, which together give,

/
p

r§'=/ > )A’};Zgu))z dxﬁ/n <Z 2A1A3;Zg(w>12>2dw< lolly

0,0
(I,J)ePy JED

by the square function estimate (1.8).

We also have
2
o2 3 ([ ot mlar) )
k,d

JEDL \Ieg: IJ)eP

vl

and since k > 0, we obtain that # {J €Dy: (I,J)e Pt } < 27k which yields

P
2

w eten e el
kno—knodn +1 AL H
< 2kng 2I€Zg|1| (III/‘ Y ‘m)
- e [ (G [ et e a) v ez,
Ie

just as before, by the square function estimate (1.8), provided p > "21‘1.

Altogether then we have

k,d — K K
Bt (.9)] S 27T 20D, S 2 R )y ha o), g

below

which implies (6.10) with

-1
5Emin{n2 - Z,’y(/aso,Z)} >0,

provided p > - ” and rk < - . < Z are chosen appropriately. Finally, summing in k,d > 0, we obtain

ZZ\BM 9| <322 £ gl S 1 gl

k>0d>0 k>0d>0
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6.5. Wrapup. Combining the estimates from all four subsections above yields the desired bound,

2n
n—1

Boelow (f; )| S 1 fllo ll9llLer 2>

2n

Remark 35. Apart from the standard reduction 3 in Section 8, the strict inequality p > was used only

in bounding the below form for large d. We will also use p > n2” for probabilistic control of the disjoint
form, but only p > 1 for controlling the above form Bapove (f, g), to which we turn next.

7. CONTROL OF THE above FORM B,pove (f,9)

Next we control the above form,

— n—=1n pn,n
Babove (/.9 _I%Rmh B,

where
R = {(Ia J) € g xD: @(I) C Ttan (Cpseudoj)} .

For this form, we will use the pigeonholed parameter k = log, ¢ (J) already used in the below subforms,
together with a new parameter r = log, Z(Z‘(‘}‘SJ) , measuring the ratio of the side lengths of I and 7., J. Note
that for fixed k£ and 7, and a fixed cube I € G, there is at most a bounded number of cubes J € D satisfying
the pigeonholed properties £(J) = 2* and Z(WE‘}“) ) — 2" such that (I,J) € R. This fact dictates that we
arrange our square function decompositions relative to the cubes I in the grid G (rather than to cubes J in
D as as in Bpelow (f, g)) in the arguments below.

To achieve geometric decay in both of these parameters, we will use the high order moment vanishing
principle of decay for the Alpert wavelets h" L7 in S for decay in 7, an integration by parts in the radial
Fourier variable for decay in k£ > 0, and the hlgh order moment vanishing principle of decay for the Alpert
wavelets h’}Z for decay in k < 0. The stationary phase estimate in Theorem 25 is not needed for the form

Babove (fa g)-
Here is the decomposition of R we will use:

(7.1) R=J |JR"", where for all k € Z and r € N,
k€eZ r=1

RFT={(I,J) e R:€(J) =2F, and £ (eand) = 27 (1)} .

First we reduce matters to consideration of cubes J that are disjoint from a large cube [—2M ,2M ] " centered
at the origin, which will permit the manipulations used below.

7.1. Reduction to far away dyadic cubes. We now dispense with the first set of trivial pairs (I, J) € R,
namely those for which J C [—QM ,2M ]n for some fixed large positive integer M. This can be achieved by
splitting the function g into

g = 1[_2M721\l]71-g + 1R"\[—2M,2M]ng =01 +92,

and noting that

(Tsfog)| S AL lgall e SUFIe 2P llgall e s 1 <p < o0
Then we may assume that g is supported outside [—2" 2] and it follows that AT = (f, hf};n> Ry
vanishes for J C [72M,2M]n.
Next we deal with the slightly less trivial case of dyadic cubes J that have the origin as one of their vertices.

These cubes are contained in 2" towers of dyadic cubes, and we will derive here the bound corresponding to
the tower {J]C}ZO:M where J, = [0, 2’? " the other cases being similar. First we note that

1 N _
( —e, 35) e~ = ¢ for all N,

—thn
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and so integrating by parts N times gives,

(Tsf, A%Tg) = / f(2) e o (2) A% g (€) de
n Jo(S)

A(S) {/Rn e RN (E) (g, kT dg} o1 (2)
_ <g,h"">/s{/ne “(en-0)" g (§)d§} <;)Nf(z)dgn_l(z)7

) V(L) see

and then

S st el < 3 ol [ (e
k=N k=N

nt
N & n,n =N _ (L
< (3) 3 Kol s, (5 1o [ Z(! g1 'F) "0, )tz
N\ i nay = 2N :
< (n) £l s (;;v <|<g,hjk |Jk> ) (};VK(JIC) 1Jk(z)> dz
1\ Kewsnf,  N® )T SRRk
< () | [ (Z - 1Jk<z>> | |/ (;Veuk) 1Jk<z>> i

Thus we obtain
N

(eS) N

n 1 1
5 [(zss i) < G (3) 1ol < G () Wliallolr « 1<p<ox,
k=N

using the equivalence (2.1) of square function norms on g, together with the finiteness of the final factor if
N is chosen sufficiently large. Indeed, |\g|;, =~ ||Sg||,»» where

N 2
/ ‘AJ’ZQ )‘
" \Jep
o n,m

- 2 z N
I Z(<g,h’;gz>¢l|7|> L, = [ Z<g|j|’>11,,<z> ,

JED JeD

p’ 2
p)

o= [ (X (mmymze)’) o

JeD

I1Sgll7

/

vl

and for N > % we have,

/ (Zf(Jkr”lW,,(z)) dz = / (Z 22Nk1([o,2k]">,,,(2)> dz S / (141272 " dz < oo
n ]Rn k:N n

(NS}

k=N
Definition 36. Set

R. = {.1)er:un[-2"2]" =0}
= {(I,J) €GxD:®(I) C Toan (Cpseudo) and J N [-2V,2V]" = (/)} ,
and with R*" as in (7.1),
(7.2) REr

{7y erRM a0 [-2Y,28]" =0},
UrEr.
k

Assumption: It is understood from now on that all of the cubes J € R considered below in this
section satisfy J N [—2V,2V]" =0, i.e. J € R..

R
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7.2. Pigeonholed subforms. Using the moment vanishing of the smooth wavelets h}l;l’", we first show
the preliminary estimate that for all € N,

(7.3) (<Tsh?;m R S e ey VITIL, - forall (I,J) € R when r > 1.
So consider the case (I,J) € RL, r > 1. Using (4.10) and (4.11), with ¢; denoting the center of I, we have

(ronipnmity = [ [ e merenizn ) on 6 de

— / E*iq)(cl)'ﬁhgzz (€) {/S G*i[¢(1)*‘1’(61)]'§h?;;1,77 (z) dx} d¢

2 (=g [@ (z) — @ (cr)])
/n efiq>(cz)-§hr};z () {/S [Z (—i€ - [®( e)! ® (er))) + R, (—i& - [® () — @(01)])1 h?;l’" (z)do (w)} dg.

£=0

In order to apply the moment vanishing properties of A7 I weneed to express ® (z) by Taylor’s formula
as well,

V4
S (cr)+Tx(x—cp),

and then plug this expression into the previous Taylor formula. The result is that all the terms with a
polynomial in x of order less than s vanish, and we are left with

ay (rsi iy = [ e { [ Teon; @ o @ |
[ emeranzof [ 1R @) - )] @) do o)}
+ [ emeragrof [0 -l s @)}

where

(7.5) ['(&2) =Ry (i€ [®(z) — ®(c1)]) + T (. — 1)
consists of the remainder term R, and a collection of error expressions in I'y (§,x). Because |z —¢;| <
|® (x) — @ (cr)|, these error expressions satisfy the same pointwise bounds as the original remainder term

R, (—i& - [® (z) — @ (c1)])- Recalling from (4.11) that the remainder term R, satisfies | R, (ib)] <
taking absolute values inside the integral, we obtain,

(7.6) [(Tshy " my)| S (dist (0, 9) € (1) sin )" /T,
where 6 is the angle between £ and ® (x) — ® (¢;). In the case at hand where (I,J) € R%, we have

0 =l (meand) = dlst((‘é)J), and so

‘<Tgh” L h"’7> < (dist(O,J)f(I) dlii‘%) VI ~ ) e () ], for (I,J) e R,

which proves the preliminary estimate (7.3).
The case k < 0 will be handled by this last estimate alone, since it yields

I K
S (Thand)" (“if)ﬂ) ()T < 272 ks for k<0,

(n—s-l)" and

(7.7) ‘<Tgh" L pn v’7>

upon discarding the small factor £ (myanJ)".

To handle the case k > 0, we introduce the radial integration by parts principle of decay, that will deliver
geometric gain in k. First we observe that (I,J) € R, implies I C man (Cpseudod ), and so for v = meancy
and for € myan (Cpseudod ) We have

v -®(z)>c>0,
and

1 N :
(_Z‘,MV . a&) 6_1’{)(1)-5 = 6_“3'5 for all N.
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Integrating by parts IV times then gives,

(7.8) (Tshi b m) = / /S N IO
JA L emenina @ acmtras
ays ,

N[ o mr e (s ) e

and then we have the second preliminary estimate,

CHREIO)

We must now combine these two preliminary estimates in the case k > 0. As usual, to achieve this we
iterate the two associated formulas (7.4) and (7.8) before taking absolute values inside the resulting integral.
Thus we write,

(7.9) [(Tshi i)

Wi (@) do £ ()N VT

n— n . —1P(x)- n 1 N n—
<Tshl;ﬁl’",hJ;Z> = ZN/S{/ e PEE (v 9 )N B (€) di} <V<I)($)> Wy () do
, A 1 N
— —i®(cr)-§ —i[®(z)—P(cs)]-Epn—1m o \N
fomer g fersereerinoe () o) oo izod

- /Rn e@(cr)f{/sr(g,x) Ry (@) <M1)(96))Ndz}(V~3§)Nh7};Z (€) dé,

where
I'(§z) =R (=i [@(z) — @ (ch)]) + Tw (x — 1),

is as in (7.5) above, and I' (¢, x) satisfies the estimates given there. Now we take absolute values inside the
integral, and using the estimates developed above, we obtain the following inequality for k > 0,
(7.10)

n—1,mn 1n,m
‘<TShI;/§ 7hJ;H>

<0y ey )N VT < (“jmj)) ()N < grreg V-2 T

Combining (7.7) and (7.10) gives

5 277‘n27|k\ min{x,N—2x} |I| ‘J ,

(7.11) |(Tsny )

and with this estimate in hand, we will now prove that for all N > 2k and r € N,

n— n, —r(k=251) o—|k| min{x,N —2x
(7.12) S (Ts AL fAg)| S 27 T g min e N2 g
(I,J)eRE™
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)

where RE" is defined in (7.2). Indeed, we have from (7.11) that

S [msaptrpanig) < 3 ey kmintN -2 ( / \A?J”f]) ( / N

(I,J)eRYT (I,D)ery™

— 9 TR9— |k| min{x,N— 25}/ (/ ’AT}’ZQ
(I,J)eRE"™ 7

n

) A7 f (@) da

2
- —|k| min — n, n—1,
) I SR VA=) I D SR
R (I,J)erk" T (I,J)erE"
, 1
2\ T v
) B 2
T > (/ \Afﬁg) w| ([ X |antre)
(r,7)erkr N7 B \@nertr
where the square function estimate (2.1) shows that
AN
L |arrr@l ] a] <isl..
"\, )erkr

since for each I € G, there is at most one cube J € D such that (I,J) € RE". On the other hand, for each
fixed J € D, the number of cubes I € G such that (I,J) € RET is approximately 27"~ and so

Z ‘<T A?Kl’n f7AJ,‘§g>‘

(I,)ERY™
/ 4
2\ T P
5 2—rm2—|k\min{n,N—2m} / Z 2r(n—1) (/ ‘A?Z‘g ) dx ||f||LP
" \Jep In
~ 2_T(K_n 1)2 |k| min{x,N—2x} ||g||LP ||f||LP ,

for 1 < p < oo by the square function estimate (1.8) again.
7.2.1. The enlarged form. For k > 0 define
EFT={(I,7)€GxDy: £(J)=2" € (mpand) =27¢(I), and I C Cpsendo2"Tand } ,

and define the enlarged form,

Bunarse (19)= 35 S (T 8317 £.770)

k=0r= O(I,J)Egkr

|25 mean |

Then for each fixed J € D, the number of cubes I € G such that (I,J) € R s approximately 7]

2k(n—l) P nJ| 1k —1
2 Imandl — 9(r+R)(n=1) and so we have

2—T(n—1)|ﬂtanJ‘
Z ‘< A?nl’nf7AIng>’

(I,J)erE"

N 1
Y

) dJI ||fHLp

N

2—rn2—|k\ min{x,N—2x} / Z 2(r+k (n—1) (/ ‘AT} T]g

JeD

—1

2—7’(1{— ) L }||g||Lp Hf”LP ’

%

(NS}

dzr

==
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for 1 < p < oo by the square function estimate (1.8) again.

7.3. Wrapup. Finally, taking x > ”T_l, N > 2k and summing the above estimates over r € N and k € Z,
gives,

S (T 85 18509 S 1o lgll

(IJ)ER.

Combined with the reduction in the first subsection, we obtain the desired bound,

IBabove (f; 9)| S Hf”LP ||g||LP’ ) I <p<oo.

Remark 37. The only restriction on p here is 1 < p < 00, and so the above form Bapove (f,9g) is bounded
forall 1 < p < oo.

8. CONTROL OF THE upper disjoint FORM B;PE (£, g)

disjoint

The principle of stationary phase is not used for the disjoint subforms, as the critical point of the phase
now lies outside the support of the amplitude. When k& > 0 we must introduce the radial integration by parts
principle of decay to bound the subforms, while in the case k < 0, we must use the high order vanishing
moments of h';. Just as in the case of the below form Bpelow, combining the appropriate formulas, and
staying the mtroductlon of absolute values until the very end, will yield the desired inequalities. There is

however a crucial difference between the cases d > 0 and d < 0 in the case of disjoint subforms Bgigj;&t (f,9),

and we will treat the two cases Byl (f,9) and Béol‘girmt (f,g) in separate subsections, as the resonant lower
disjoint form with d < 0 requires probability and interpolation techniques.

In fact, when d > 0, the standard principles of decay apply to give the required control. However, as d
becomes increasingly negative, resonance begins to set in more strongly, and by the time d = —m, none of the
standard principles of decay are any longer of use. Instead we must invoke classical methods of estimating L?
and L* bounds, but using probability in order to obtain improved bounds for functions restricted to smooth
Alpert pseudoprojections.

Recall that

le](;?nt (fa ) = Z <TS A?;;l’" 1, Af} 29>
(1,J)ePy?
Wherepﬁ{d = {(ij)EPmZE(J):Qk’ andeSE(I)Qdist(O’J)§2d+1}7
and Pm = {(I’ J) < g xD: 2m+1‘[ C S and Ttan (J) co (2m+1cpscudo-[) \(I) (chpscudoj)} )

and that the parameters (k,d, m) run over
1
keZ, meN, and log2£()<d<oo

We also decomposed the disjoint form into upper and lower components determined by d nonnegative and
negative respectively,

1
Bdisjoint (.fa g) = gi?;rnt (fa ) dci‘ggfc))rint (fa g) )
0
— k d 1 — k d
:ilf):;oelrnt (fv ) = Z Z Z d1SJ(Z'nt and Bdci:gf)rint (f7 g) = Z dlsjg?nt fa ) .

m=1k€Zd>0 m=1k€Z d<0

8.1. Upper disjoint subforms with d > 0. When k£ = 0, we obtain geometric gain simultaneously in
m > 1 and d > 0 using the tangential integration by parts principle of decay. In order to handle arbitrary
k € Z, we must include additional principles of decay combined with tangential integration by parts. For
k > 0, we include radial integration by parts, and taking absolute values inside the integral at the very end,
we will obtain below that,

‘<Tshrlz;;1ﬂ7’ h7}32>‘ 5 2—kN12—N2(m+d) |I| |J|
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For k < 0, we include instead the moment vanishing properties of A’} 7 ", and taking absolute values inside
the integral at the very end, we will obtain below that,

[(Tshym wyn)| s 27 kg Natmtad) ],

With these estimates in hand, together with the square function arguments used repeatedly above, we

obtain,
gk, dm 8|k|o—8(m+d) n— 1 m nn 2n
dlblomt (frg)| s27°™27 A f J:xY for p > n —

for some 0 > 0 provided k, N7 and N are chosen sufficiently large, and finally then,

2n
kd
SN [Bin o) S 1 Nl forpz 2

k€Z d>0m=1

17

Here is a brief sketch of the two inner product estimates mentioned above, followed by the appropriate
square function estimate.

8.1.1. The case k > 0,d > 0. Combining the radial integration by parts formula (4.7),

n—1,n n 77 z)\qB(a:,y N, -~n
(Tshy 2 n N o7 () ON19) (y, \) dudyd,

with the tangential integration by parts formula (4.18),

No
_ : 1 ~n d\
Top—bn prn\ _ ;N ixp(z,y) D= n \) dad
< S J?“> ' /R/Rn—l/n«n—le Y(Dy®) () - @ (y) #1 @)y, A) dedy g,

gives

(rstirmazy = [ L M”’{(” UXIEE 10 ))Nz}w? (2) ) ()
L L {( T } o S i

Taking absolute values inside the integral, and using (4.8) together with min { T %} < ﬁ7 and (4.20),

we obtain,

(8.1) ‘<Tsh?;;17’7, hf;;z>

5 2—kN1 2—N2(m+d) |I| |J|,

as required.

8.1.2. The case k < 0,d > 0. This time we use (4.18),

N
_ 1 ~n dA
T hn. 1,71’hn M\ // / 7)\¢(?C y) ( ) U X ,)\ dxd >y
(Tohi . b VD) (@) B (y)) [ £ WA dudy iy

together with (4.13),

<Tsh?;,:1’n: h?:Z> - /Se—i@(m).thZ;L" (x) {/ R, (—i® (x) - (£ —cy)) h?:g €3 df} dx
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to obtain,

(Lo, nyn) / / - / e =y>{(m o @( TG ))N}so}' ()0 (0. 3) dody

(—i)N/ /e—“’(@f (Df ! )N hnn(f)dg B (1) dae
s | e Y(Dy®) (2) - I3 "

€]

N
_nN —i®(x)-cy 1 x 1 o e n—1, n,
(—19) / /Se ‘§|N (DV (Dud) (z) - é|> Ry (—=i® (z) - (£ —cy)) Iy, "(z)| dz hJ;,i (€) d¢,

where in the second line above, we have reversed the change of variable in (3.8). Now from the estimates
used in (4.20) and (4.14) we obtain,

(Tshp 7 nyy| s 27 Wiw= Nk T

as required.

8.1.3. The square function argument for d > 0. We follow the square function argument used for the below
form Bf)e[fow (f,g) when k > 0,d < 0. The only difference is that we now accumulate a factor of a large power

of 2™ depending on n and p, but this will be offset by gains from integration by parts in both parameters m
and d - and this uses in a crucial way that d > 0. We begin by writing the sum over (I,.J) € P4 as,

>, = > :
(I,NePR?  (I,J)EGXD: 2T ICS and mean (J)CR(2™ T CI)\@(27C)
£(J)=2"% and 2¢<(I)? dist(0,J)<2¢T1

and
‘thsdy:rllnt (f?g)‘ = Z <TS A?nl’n f7AJ I{g> < ‘<TS A?nl’n f7AJ ng>‘
(I,J)ePk (I,J)ePk
<Y oMy Named ( / \Aﬁ;“’f() ( / ]AS’Zg)
(1,7)ePhd
— o-lkleg- N2<m+d>/ </ a7 1"f(x)’dx> 1,(€) |5 (€)] de
(I,J)ePk?
2 2
< g~ Iklrg=Na(m-+d) / 3 <2m<n1> / ‘A;;mf(x)‘dx) IMONESY 2fm<n*1>]A3;Zg(£)\ dg,
"\ (1,)epk I

(1,0)erPh?

which gives

s =

P
2

g g e [ 5 (zm<n-l> / iA?ﬂf(w)\dx)QlJ(g) de

(1,0)ePh?

A

k d,
dlsjg?nt (f7 )’

, 1
P o’
2

dg

LT el

(I1,0)ePk?

= 9 lklsg=Na(mtd)p 1,
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We first consider I'; which satisfies,

’

? 2
/ 2 : /
r? :/ 3 2*m<n*1>’AJ5’;g(§)\ d§§/R <Z] g (& \ ) ¢ ~ ||gl5,

(1.))ePy* JED
since for a fixed J with £(J) = 2%, the number of cubes I such that

m—+1 m—+1 m—1
(I,J)EPW:{(LJ)GQxD: 2L C S and man (J) € @ (27 CI) \ @ (2 CI)}

and ¢ (J) = 2% and 2% < ¢(1)? dist (0, J) < 29+!

is roughly 2™("=1) and where the final approximation is the square function estimate (1.8).
Now we turn to I'y for which we have the estimate,

n- X 22"““(/ [A71f (@) a )ms) P

(1,0)ePy?

_ 2pm<n—1>/n 3 3 (/I

JEDk 1€G: (1,7)ePk? K
_ 2pm n— 1)/
Rn

(/j A7 (@) d ) 16

DN DY (/ ’A?;Zl’"f(x)’dxf

JEDL \Ieg: (I,])ePk?

2 2
AT (@) d ) 1©) d

>
(I1,J)

JEDL \1€eG: (1,7)ePk;?

[SIiS)
|
—_

A

Now for each J € Dy, the number of cubes I € G with (I,.J) € P%4 is approximately 2™", and so we
> 1 >
(1,J)

compute that,
: P
</ 27 @) ) (/ 837215 (@)] d )
& Ieg: (I,J)ePk‘d 1€G: (1,7 Epk’d I,
gmn(5-1) (/ ’A?Hl,nf ‘ ) 7
Ieg: IJeP’“d In

D
(I,J)

I€G: (I,J)ePkd

Q

and hence that

P
2

S A (/ NG )
JEDL \Ieg: IJ)eP
p
S mnighn 37 gme(E) BT (/ ’A?ml’"f(x)‘df”>
JEDy, I€G: (I,J)ePk? In
P _ 2 %
s wboonnolgn 5 ([ ot a)
JE€Dk 1eg: (1,J)ePr*? Tn

P
2

2m[%pn—(ﬁ+n)]2knz Z 1 |I|p<|l|/ ‘ A" 17} ’ dx) ,

IeG \Jjepy: (I,7)ePk?

Q
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where by the extension of (6.5) to m > 1,

n+l
1\ »1
§ : 1~ Qm(nfl)kan |ch (I)‘ oy Qm(nfl)kanan (l]) .

JEDy: (I,J)ePk?

Thus we have

1
P < 2m[%pn—(p+n)}2kn2m(n—1)2—k712dn - /‘ N 17]
b 2 1] [
Ieg
Qm[%pn—(p-%l)]gd"Z‘] i1 <|I|/‘ AP 171 ) 1; (z) dz
Ieg
%
S 2m[%p"—<p+1)]2d"/ <|I|/ a7 “7f( e ) dz,
S1eg

if p> =%, and then using p > 2 and the Fefferman Stein vector valued inequality, we can continue with

) 5
rp < gmliem-en]gdn / (Z <M‘A?;nl’"f‘ )(@) da
S \reg
< 2mlErn-in]gin / (Z‘A’}Kl’”f‘ ) S gmlEpn= G Dlgdn e
Ieg

Altogether then we have

[BhiGm (F,9)| 5 27 HmgmNalmbdp 1y g okl NaCmt dgm{Fon=GtDlgdn | 1) lg]| .
p7kmg=(Na=gent(pD)mo=(Nommdgin | g |lg|| < 27 MOg=0ma=0d) £ Yjg]|,
ford >0 and p > ffl, SO

o (o) o0 (o)
SO B )| S D0 D 2 M gl e S 1 gl

k€Z d=0m=1 kEZ d=0m=1

)

9. CONTROL OF THE LOWER DISJOINT SUBFORM BI¥e (£, g)

disjoint

Here we bound the lower disjoint form

lower k ,d,m
Bd1s301nt § : E : E : dlS_]OlIlt f’ ’
k€EZ d<0Om=1
which is the sum of all the disjoint subforms

k d,
dls_]czlrlt (f7 )

> (T AR LAY,

(I,0)ePi?

but taken only over d < 0, which is equivalent to dist (0,J) < T 1)2 This restriction describes the ‘lower’
region of the disjoint form, and accounts for the terminology.
Note that for fixed ¢ € R”, the wavelength of the oscillation of the function z — e~ *®(®)¢ is roughly

Ifll ~ 6(2[22 , while the depth of the patch of the sphere ® (I) in the direction toward ¢ is roughly £ (I)sin 6 =~

2m0 (1 )2. Thus we will have oscillation along the patch ® (I ) if and only if the wavelength 6(2{22 is less than
the depth 2™¢ (I)?, i.e. m > |d|, while we will have smoothness along the patch if and only if m < |d|.

On the other hand, for ¢ € J, the wavelength of the oscillation of the function & — e~ *®*)€ is roughly
—— 1~ 1 (unless the unit vectors % and ® (c;) are nearly orthogonal), while the depth of the cube
cos £ (®(x),cr) les]

in the diretion of ¢ is roughly £ (J) = 2*. Thus we will have oscillation along the cube .J if and only if the
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wavelength 1 is less than the depth 2%, i.e. k> 0, while we will have smoothness along the cube if and only
if k<O.

Conclusion 38. The most problematic case occurs when d < 0 and both m = |d| and k =~ 0.

We begin by illustrating our approach to controlling resonance in the most problematic of the subcases
in the next subsection, and it is here that we require the use of probability and an interpolation argument.
In such instances where we need to use expectation over ‘martingale transforms’, we will also need to apply
this expectation to norms rather than bilinear forms, which introduces some complications.

In order to handle cases with partial resonance in the subsequent subsection, we introduce a different
decomposition of the disjoint form into resonant pipes that respects resonance when d < 0, and then apply
principles of decay along with probability and the interpolation argument to control these remaining subcases.

9.1. The extreme resonant case. The most resonant of the disjoint subforms is Bgigj’:;nt (f,9) = Bg’is_j;?ﬁ? (f,9)

when ¢(J) =1 and d = —m. Fix (I,J) € P%~™ and let J™ _[I] be any dyadic cube in D satisfying the
following conditions,

- 1
(91) é (Jmax [I]) = ma
dist (0,7 (1) ~ ——
(1)
Teandim [I] © 2™\ 2m~ 1,
14 (Wtan‘];nnax [I]) = 2"/ (I) )

where £ (TianJimes [I]) denotes the diameter of the quasicube mwian Jim, [I]- If € (I) = 27° with s > m (which

max max
follows from (9.1) and £ (mian 2 [I]) S 1), then we have

max

e L
’ t (Trtan g ¢ (‘]Inax [ ])

max 1) = G5t 0, Jm 1)

o = gm-s,

max

(1) =2, dist (0,7

max

[ID ~ 225—m

At this point we note that the cubes J. [I] are essentially the maximal dyadic cubes that fit inside the

max m s—m
annular conic region given by (9.1), and hence there are roughly dls;((});;] mm[)j]) = 2225

max

~ 257™ gsuch cubes

stacked away from the origin. We enumerate these cubes by {J7.t [T ]}ff;m and let

max

c28—m

(9.2) g = | gt

max max
t=1

denote their union. Thus J™* [I] is a quasirectangle of ‘length’ roughly dist (0, J™  [I]) ~ 225=™ and ‘width’

max max

roughly 2° - we say ‘quasi’ because JI4* [I] is a union of dyadic cubes J"! [I] staggered in the direction

of the annular conic region. Note that there are at most C,, such quasirectangles J7:% [I] associated to any
given cube I € G [S].

Remark 39. Since quasirectangles do not respect resonance (which varies along the quasirectangle), they
will not play a part in the proof going forward, but will instead be replaced by pipes in the next subsection.

Ifop=4« (CJZZ:ax[I] —®(cr),® (cI)J‘) is the angle between the vector c¢;m (1 — @ (cs) and the unit vector

D (cr), and if § = L <CJ$‘“‘“],<I>(01)> is the angle between the unit vectors 28l and & (c;), then

cym [1] cygm [I]l

max max
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0 ~ 2™ (I) and we have

(93) g*gﬁ = K(CJm [1]7@(01),@(61))

max

Cym [T Cm 11
= L gl — el (ef) | + 4 crm i — ®(cr),eqm 1 — il
s e

i) _ Cumn, )
Cym, (1] ’ (1) [ 2m¢ (I)

[ max m
— 4 g en) 10 R 2 (])
<|CJ"" [1]| ‘CJ"L (1] _(I)(CI)| dist (0, Ji. [1])

max max ’ max

m 1 ~ om m—28\ ~ om
= 2 e(1){1+dist(ojmm}~2 (I {1+2m %} ~2me (1),

) max

since s > m. Thus it follows that there is neither oscillation nor smoothness of the inner product

(1 830 5.8500) = [ [ {rmgtoy o ) evoras g 6 de
J U
in the integral over I in braces, since the ‘tilted depth’ of ® (I) in the direction § — ¢ is given by
tilted depth & £ (I) cos ¢ = € (I) sin (g - ¢) ~ 2m0 (I)?,

and so
1

— = 92™My(] 2%‘5'1‘6 d depth .
Tt (0, T ) 2 () A tilted dep

(9.4) wavelength =

Of course there is neither oscillation nor smoothness in the integral over J either since ¢(J) = 1 and the
wavelength coming from the sphere is approximately £ (J) = 1 as well.
Then (I,J) € P%~™ essentially if and only if J C J™* [I] and £ (J) = 1. There are roughly ﬁ cubes

max

J C Jmt [I] of side length 1 for each 1 < ¢ < ¢257™ and we may restrict our attention to the cubes I having

max
side length 27° with s > m, that are contained in a cube ) where

(9.5) Q C S with £(Q) ~ 2™~*, such that J% [I] ~ J:% [I'] for all such cubes I C Q.
We also then set
(9.6) @ = U s,

ICQ

which is approximately equal to any of the J".* [I] taken individually, and thus Q* is a quasirectangle of

max

length roughly 225~™  and width roughly 2°. Thus we have defined cube / quasirectangle pairs (Q, Q")
which we now analyze a bit further. Recall from (9.1) that ¢ (m4anQ*) &= 2™¢ (I) =275
We write

(9.7) Qref = > AR fand PROTg = Y ATy,
ICQ: ¢(I)=2—+ JCQ*: £(J)=1

and we claim that

(9.8) By i iZ<TsA§“”Q‘;¢;2ﬁ PIo )| < i i
Q

7]

s, (T3

m=1s=m m=1s=m
S 1l gl >
~ e 191l e’ > p_n_la
where we recall that the parameters k and d are fixed at k = 0 and d = —m. It is here in (9.8) that

our argument requires averaging over all involutive smooth Alpert multipliers on the left hand side of the
inequality.
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9.1.1. The interpolation argument. In order to illustrate the probabilistic methods in a relatively simple
situation, we first prove (9.8) when the sum is taken only over s = m € N, so that both @ and Q* reduce to
cubes of side length roughly 1. Thus there are only a bounded number of such cube / cube pairs (@, Q*),
which for convenience we treat as a single pair (Qo, QF). We claim,

oo
SK/ K b o
> (Ts AT QS S P )

m=1

2n
n—1

(9.9) By Sl llgllper 2>

We note that the expectation Ef; will circumvent some of the geometric L* arguments that go back to

Fefferman [Fef] (see also [Bou], [Gut] and [Tao4]). Recall that we are in the case d = —m, and that
Quf= > ARMfadPIGPg= 3T A,
1CQo: £(I)=2-m JCQy: £(J)=1

where Qg is a cube in R"~! centered at the origin with side length approximately 1, and @ is a cube in R™
at distance 2™ from the origin with side length approximately 2™, and such that dist (Qo, Ttan@5) ~ 1. We
will again use @ to denote the Fourier transform of ¢. Thus we must estimate

(9.10) <TSQZ;?m°f7PZ;?;§39>=<Ts > Nl DY A3229>
IeGm|

5] and ICQq JCQs: e(N)=1

> b /S / e AT [ () AT g () dudg

1€G,,[S] and ICQo JCQy: £(J)=1

/ . /Se,z-z.g Yo AR R) 0 (2)dzy D Alg(§)de

I1€G,,[S] and ICQo JCQg: £(J)=1

= Jo (€) gm (€) dE,
Rn

where fq: denotes the Fourier transform of fg as in Subsection 5, and

gm (€) = ST ang©) =P g(€)
JCQy: €(J)=1
fo(z) = QuUS(271(2) 0071 (2) = 3 AT (@71(2) 997 (2)

1€G,,[S] and ICQo

S (pEELT @ @) e (= Y S,

1€G,,[S] and ICQo I1€G,,[S] and ICQo

and where the spherical measure f1 has mass roughly ‘f([ )‘ 2-7(n=1) and is supported in S* .

The bound (9.9) now follows immediately from Holder’s inequality and Proposition 29, upon noting that
Q7 in Proposition 29 is the pseudoprojection Q}, ,,, here. Indeed, from Proposition 29 we have

o0
"
E B
m=1

and then in particular,

Sk
TsAa"" QL% f

(o)
< 9—men p
o (loml*) ~ mZ‘l 10z 1,10

oo oo
Sk, , ,0,Q5 Sk, , ,0,Qg
oS5 (roatcurt)| < o st [Pl
m=1 m=1 m m
ad 2n
< Z 27 mEmr ||fHLp(|¢m\4) “g”Lp/(lwml“) Sl lgllper  where 5, > 0 for p > o1 me N.
m=1

But we can in fact obtain more. Define the smooth Alpert pseudoprojection

(9.11) Prig=>" Y A,

kE€Z JCQy: £(J)=2F
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where of course the restriction J C Qf means that k£ < m in the sum above (contrast this with the restriction

tok=0in PZlOmQ °g). Then we have the stronger inequality in which the sum over k is included,

o0 S o0

S (Ts AT QPR ) | < S B q,.
m=1

m=1
> Q 2n

< 3 gmenn Pi%g| S lallglw s P> -—rmeN.
m=1

Remark 40. There is no direct use here of square function estimates to add in the parameter m. Instead,
we use expectation, geometric decay, and the boundedness of connected smooth Alpert pseudoprojections on
LP - a pseudoprojection is connected if the cubes are summed over a connected set in the grid. This feature
will persist in summing over the additional parameters s and d below.

(9.12) B,

Sk, Q

Qn QOfHLP

9.2. The resonant pipe decomposition. In order to complete the proof of the main inequality (9.8), we
will abandon the decomposition into cones parameterized by m, and distances parameterized by d, since
this decomposition does not respect resonance in the inner products. Instead, we will decompose the lower
disjoint form,

B}:lci:/]irmt Z Z Z gl:]g?nt Z Z Z Z Z <TS f7 J; mg>

kEZ d<0m=1 T€G,[S] k€L A<Om=1 (1 j)cpkd

into ‘truncated pipes’ P!, instead of the quasirectangles J7% [I] introduced in (9.2) above, using new
parameters w, r in place of m,d. The advantage of this new decomposition into pipes is that it does indeed
respect resonance.

Fix s € N and consider a cube I € G4[S]. Let ul = ®(c;) and let (ul)/ = {uf,..,ul_,} be an

orthonormal basis for the space ® (CI)J‘ perpendicular to u,,. We will use the coordinate system (uI )/ , u{L}

in R™ in connection with the cube I € G, [S], so that as we vary I € G,[S] the coordinate systems

{(uI )/,ué} rotate (Span {ufz} and Span (ul )/ are determined canonically under rotation, but not the
individual basis vectors ul, ..., ul ;).

For convenience in notation, we momentarily suppose without loss of generality that I = Iy € G4 [5] is
centered at the origin in .S, and consequently we can take {u{, coul ufl} to be the standard orthonormal
basis {e1,...,e,—1,€,} in R"?, and £ = (&4,...,€,,) = (f/,ﬁn) € R™ is the usual representation of a point &
in R™. Then the pairs (lp,J) € G x D for which we have resonance on both sides of the inner product, are
precisely those satisfying £ (J) = 1 and,

1
1 — =~ til h~ 2 si
(9.13) dist (0, 7) tilted dept sin 6,
; L 2 sl
ie. €] = i 2 |£,‘, for £ € J,

ie. 27571 < |§’| < 2l=s, for £ € J,

where 6 is the angle ¢ makes with the positive &, -axis. Thus the union P of the J's satisfying £ (J) =~ 1 and
(9.13) is essentially the difference of two tubes, namely the 25*!-tube and the 257! tube that are oriented
vertically with length 22¢ and width 2%, and centered on say the plane &, = 0. We refer to P as the
resonant 2°-pipe for Iy. In terms of the projection '/Tq;‘(CIO)L of R™ onto the horizontal plane perpendicular

PSIO ~ {§ € R™ : dist (C[O,ﬂ'{)(c] )Lé-) = 25}7
0

. AT
since {f | ~ dist (C[O,’]T(CIO)J_g).
We also consider the truncated pipes

ph,=PlnLl, 1<w<s.

to ® (cr,), we have
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that are given as the intersection of the pipe P0 and the horizontal slab Lo = {f eRM:2Z—w-l ¢ < 225_“’}
that is distance 22°~%~! above the plane &, = 0 and has height roughly 225~%.
We now extend this notion of pipes to all I € G, [S].

Definition 41. For I € G, [S] and 0 < w < s, define the truncated pipe PI to be the rotation of the pipe
Plo, by any rotation R that takes ® (c,) to ® (cg), i.e.

Sw = RPIO ~ {g € R™ : dist (C]O,W(p(c,)ig) ~ 28}7

where T (er) - L.

- 7TR(I)(CIO)

Note that if |§ | > 2% then e *®(*)€ oscillates at least \5 | times along the span of ® (I), so that integration
by parts is effective, while if |§ | < 2% then e “®@)€ varies by at most | ‘ along the span of ® (I), so that
the vanishing moment properties of h7,_ are effective.

Definition 42. For r > 0 define the n-dimensional annulus by Ay, (0,7)
A, (0,7) = By, (0,7)\ B, (0, g) :
which we sometimes denote by simply A (0,r). Define the upper quarter annulus Ay (0,7) by
Ar (o) ={cean g, =1}

Finally, we note that the upper quarter annulus A ( 225_“’) is essentially the union of the truncated
pipes P!, = PInLL for I € G, [S], ie. Ay (0,227%) ~ U
I€gsl[S]

and that the overlap of the truncated

S ,w?
pipes PI is essentially 2%("=1) je.

La, (0,220 (§) S Qw(n ) > 1pr, (§) Slea,2ewre (6).
I€g,[S]
To complete control of the disjoint form in the case d < 0, it suffices to prove the following lemma. We will
later establish average control of P norms instead of inner products, something that is needed to complete
the proof of Theorem 2.

Lemma 43. Suppose s € N and 0 < w < s. Then

2n

o | (TS AT QP 2 9)| S 27507 ISl Nl o Jorp > ===

B ;
-1

where the implied constant is independent of s and w.

To prove the lemma, fix 0 < w < s and a € 298] and consider the positive expression,

(9.14) = > > / {/ Z"b(z)fAf“’st(a:)dfﬁ}A?;Zg(ﬁ)df7

1eg.[s)Jcpl,

which includes only the portion of the smooth pseudoprojection PZ ( given by P7, g. We begin

0722(s—w))g PI

by establishing control of Z%,,, and then control the sums over cubes J in expanding geometric annuli away
from the truncated pipes PS ws DY applymg decay principles to obtain geometric decay factors. Finally we
apply the arguments used to bound Z%,, to each of these collections of annuli, and then sum up the annuli

to cove all of the upper quarter annulus A (0, 225*“’), which completes the proof of the lemma.
Definition 44. Define the expanded truncated pipes

Pl Irf={¢eR": 6, € PN},
where 6,6 = (—/, g—") is a monisotropic dilation for r € Z and C,, is chosen sufficiently large. Thus
P;“w [7] is a truncated pipe of height roughly C,22%° and width roughly 25" centered at a point horizontally
located away from that of PSIf;U Then define the rotated expanded truncated pipes P. s w ] for I € G5[S], b
Ps{w [r] = RPSI,(;U [r] for any rotation R in R™ that takes cy, to cy.
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Note that if C, is chosen sufficiently large in the definition of P9, (r), then for every I € G, [S], the upper

quarter annulus A (O, 225) is contained in the union of the tube Tgl w

and the pipes P/, (r) for r < 2s, i.e.

(9.15) Ay (0,2%) c T2, (U ! ) for all I € G, [9].

We will need to choose C,, even larger in Subsubsection 9.3 below.

Definition 45. For a € 2915 and r > 0, define

(9.16) 2= Y Y / { / @(“'Mf“"@?lf(:c)dw}ﬂﬁsﬁg(f)df.

Ieg,[S] Jc P!

s, 'w

We will now control the average of this sum of inner products, as well as the stronger average norm
estimates, see (9.18) below. First, we consider the two extreme cases w = 0 and w = s, which are easily
handled by two different techniques. Then we combine these two proofs to give a single argument for the
general case.

Definition 46. We define
RE® (r) = {(I,]) € Gs [S] x Dy : J C PL,, [r]}

to be the set of pairs (I,.J) € G x D with £(I) =27%, £(J) = 2" and J C P!, (r). When r =0 we write
sitmply
R =R (0).

For symmetry of notation, we also introduce tubes Iy [w] that are essentially the same as the tubes T\
For I € G, [S] and 0 < w < s, define

j(\)[w] = [_25725]71—1 22(5 w—1) 22(5 w) ~ To

S, w?

and extend this definition to I [w] by rotation , so that I [w] ~ T!, and I[0]~1.

9.2.1. The case w = 0 (Direct Argument): In the case w = 0, we first consider Z2, with the sequence
a =1 of all 1’s, since the arguments in this subsubsection take absolute values inside anyways, and do not
use probability. The bound for the subform

Zsl,ozi Z Z < A?nmf7AJm9>

s=11€G;([S]) jeD: JcT

applies more generally to indicators 1; applied to f, in place of smooth Alpert pseudoprojections A" Ln
applied to f, and to 17 in place of 3 ;5 ;-7 To see this, we first note that

sl = (f] [ wa df) <l (i)’

I
n+1 _Sn _s N
» 2 P 11f||Lp(S) =27%r Hllf”Lp(S) y

n—1 n+1 n—1 n+1 n—1 2n
Epn = ——— — = p—1— = p— .
p p p n—1 D n—1

Then with s fixed, we continue with

where

3=

Z (Ts1:f,179)| < Z ||T511f||Lp(f) ||9||Lp’(f)§ Z HTS]-If”I;p(f) Z HQHZPI@
Iegs[S] Iegs[S] Iegs[S] Iegs[S]

14

S Z 27 %kepn ||11f||§P(S) HgHLP/(uIEgS[S]f) < 27w HfHLP(S) ”gHLP’(Rn) J
I€g,[S]
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and finally we sum over s € N to obtain

Z Z <TS]-If7 19> < Z Z T511f7 1fg>| < CS’an”LP(S) ”g”LP’(]Rn) ;

s=11eG.[S] s=1T1eG,[9]

where
2n

-1

o0
Csn = ZQ*ET”"S < oo for p > -
s=1

Corollary 47. If we enlarge the cubes I by a factor 2t to I [t] = 211, and if we enlarge the tubes T transversally
(meaning perpendicular to ® (cr)) by a factor of 2" to I[r], then we obtain the estimate,

7275 25 | £l sy 9l o
N 1
o)t (e

Remark 48. The corollary includes the smooth Alpert wavelets case,

(9.17) S [T o £0%0e)| < Crm 1 sy gl o -

I€G:[S] jep: JcT

> <T511[t]f,1m]g> < 02"

I1€gGs[S]

Proof. Apply the above argument and use (‘f [r]

We now turn to obtaining the stronger estimate

(918) Z ||TSQZiLnf||Lp(A+(0722s)) /S ”f”Lp(S) )

s=1

and for this, we must consider the smooth Alpert wavelets case (9.17), so that we can use integration by
parts in the z-variable in the expanded pipes.

Expanded pipes

Consider an expanded truncated pipe PSI% [r]. For r > 0, we claim that the wavelength on I in the
inner product is much smaller than the diameter 27° of I, and so we can use integration by parts to gain
a geometric decay factor of Cy2~ "V for all N > 1. Indeed, for ¢ € J with J C PSI,% [r] and 0 < r < s, the

wavelength of the exponential factor e *®(*)¢ is roughly % ~ 271” and referring to (9.13), we see that the
tilted depth of I in the direction &, is roughly £ (1) sin f, where sinf = |é|| ~ 225 . Altogether then,

2rts 1
tilted depth ~ ¢ (I)sinf ~ 27° 53 = 2" 525 = 2" wavelength,

and so the exponential factor e~*®(*)€ oscillates roughly 2" times as z traverses Ip.
Thus
(1s o370 og) = [{ [ e o wyan) a50(0)de
where for ¢ € J and J C Psi% (r), the integral in braces satisfies,
1 N
—i®(x)-¢ An—l,nf d — /(8 ) —i®(x)-€ An_l’"f d
e _ x)dx - ] e " x)dz
/ t " 1 2) 0, (®(0) 0 " $12)

()N / e B¢ (aW)N NP f (@) d

and hence is dominated in modulus by Cy27"V [ ‘81\7 A Lo g (a:)‘ dz since

1 tilted depth
' (z) - €| = || = 27F° (also o PLeC il

- r+s f PIO .
(I) wavelength ™ > ’ or &€ Py (r)
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In conclusion, for any cube I € G, [S] we have

[ et f @) ds

Plugging this estimate back into the inner product gives

(9.20) (zs oy ropig)| < f / SIS AT £ (2) | |57 (6)] de

crrero (o sqz0 1)) (| sal).

For use later on, we note that for any K € G [S] with £ (K) > 27°, we can sum over I € G; [K] in (9.19) to
obtain

(9.21) \ [emesag s o) ao

where

(9.19)

< Op2- (N / 0% A3 g ()| dr, €€ PLol].

IA

A

S Cy2m e / ONQGf (@) de, g€ Pl

1, _ 1,
Qo = D AL
1€G,[K]
and with a similar estimate of the corresponding inner product.
We now apply the argument used above for bounding

02| XX [ femereant rwac anrae de|

1eg.[s]jcrl,

to the expanded truncated pipes Pgl o [r] in place of the tubes TSI s, to obtain from Corollary 47 and the

estimate (9.19), that

1 b z
9.22 HT N ‘ - / d
( ) I K f LP PIO[T’]) PI ['r‘] €

[ ag i s @) da

1
1 P »
< |Ps[,0 [THP |I|ﬁ <CN2(T+S)NP/’6N A?;l’nf(l‘)‘ dm>
I
ne 1 P v
< On2OTINT P 1 (/ 0V AT (@) ‘“)p
< Cn2 (N g s g Ap T ||
o Lr(S)
Thus
S o) 5 e (8 gl
Ieg,[S] I€gs[S] )
< CN2—T(N—%)2—ssp,n Hf”ZL)p(sw
and so also,

(9.23) Zo=| Y X / { [ e sy @) f 857 (6)a

IeG,[S] JCPI[r]

< n—l ,
< 2 HTS A[,i Pl i) gl v (PI,[r])
L L
< [ > ol
= » Lr' (PL[r]I
16G.19] Le (1) 1€G.15] (PLalrl)
< o2 2 £ sy Nl gz -
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Norm estimate

We can extend this inner product estimate to a norm estimate by duality. Choose an appropriate function
gs with [|gs|| " (gny =1 and

(TsQu=1f,g5) = || TsQe " ]| ,
Le ( U {Ts{uU Pg[r]})
Ie€gs(s]

>0

and then with N > 22— 1 and p > -= sum in r and s to obtain
ZHTsQn o fHLv(A+<0 22)) S ZHTSQ" |
! LP( U {TguU Pgm})
I€gs([9] >0

Z| (TsQ ™" f,95)] < ZZCNQ (N=252) g=sepn 11l Le(s) sl Lo @y S Nl ogsy

s=1 s=1r=0
which is (9.18).

9.2.2. The case w = s. In this case we need to take expectation. Since each fixed cube J in the upper
quarter annulus A, (0,2%) belongs to the truncated pipe PS{ s = PI N LE for essentially all I € G, [9], we get

2, = Y 3 / { / ié(w)'gAf“’”f(ﬂf)dw}A?;Zg(f)dﬁ

IeGs[S]|JcPl,

prT;

Qo,b Kg

Q

where Q¢ L., = > 166.[00] A} and PGk = 2gen, (5] A’};l’", and where Qo ranges over a bounded

Sk,nAn—1,m n,n, Swk,nAn—1,m
S (LA QP )| S D | Ts AT Qi s
Qo Qo

number of cubes in S with side length approximately 1. Also note that
QS = AT R =S S () Sl

I1€G;5[Qo] 1€G;[Qo)
= Sedae D (AR H = SuAaQG = Y e AT
I€G:[Qo] 1€G:[Qo]

Now we apply just part of the estimate (9.12) to obtain

a n—1,n
EQQS[S Z@ s~ ( 265[S] QO,S,HQQO ER w9

forp>%andm:s€N.
We do not need to make use of expanded pipes in this case, due to the small size of the ball B (0, 29).

’TS‘AaN " QQO,S K

< 97 €p,nS n—1,n ,
Lr(B(0, 28))) ‘ ) pl 2 HQe f||L:n ”g”Lp )

9.3. The general case 0 < w < s via square functions. In this subsection we prove the average norm
estimate for each s € N,

2n

(9.24) Egg[S]

| Ts A Q|

<27t | f|2, ,  for p> :
e (B0220)) 117 orp >

It will be convenient to pass back and forth between average norm estimates and square function estimates
using Khintchine’s inequality. For example (9.24) is equivalent to,

2n
9.25 HST] ’ S 27¢npd P f )
(9.25) E301 P~ 1l o forp>
where
2 2
(9.26) sii= Y ‘T ApL g

Ieg.[S]
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is the square function associated with the random decomposition
S, - Sk -1, -1,
TsAx""Qy 1" f = Z arTsAa"" A" f = Z aiTs A}V f, ae29ll,
Ie€gGs[S] Iegs[9]

Finally, it suffices to prove the following inequality for each 0 < w < s,

9.27 H ‘ < o= | f]],, |
(9-27) Staf | a0z S £

<
Lr(B4(0,27)) ™
fI% ., follows from applying Khinchine’s inequality to the model inequality (5.4), and now we finish
the proof using the decomposition

with implied constant independent of s and w. Indeed, the case w = s, which is HS;S f ‘

2—5€p,n

s—1
By (0,2%) = B (0,2°) U [ J Ay (0,27).
w=0
We will prove (9.27) in four steps, the first two being local estimates requiring probabilistic arguments,
and the second two being global estimates for expanded pipes that require deterministic arguments. The
probabilistic local estimates are used to control the sums over cubes I € G [K] which are close together,
while the global deterministic estimates are used to control the sums of cubes K € G;_,, [S] which are farther
apart.

9.3.1. Step 1: local probabilistic argument. Here we prove the local square function inequality,
HS'r/ Qn 1, nf‘ n 1, nf
T,s

which by Khintchine’s inequality is equivalent to the local average expectation inequality,

< 9= 8€p,n

, for all K € G5 [9],
Lr(AL(0,225—w))

L?(S)

00 s.
Eg‘g[s] Z HTS,Aa QL ’"f’
s=1

< p

Lo(Bo2ze ) Hf||Lp(S) , for all K € Gs_4, [9].
Consider (I,J) € RE®, ie. I € Gs[S], £(J) =2" and J C P!,,. Recall that T/, is the tube given by the

convex hull of the pipe PI For 0 < w < s, these tubes have bounded overlap approxmaately 2w(n=1)  Thus

for each K € G,_,, we can define a tube Tf@h = U T! , consisting of all the tubes T} with I C K. Note
I€g,[K]
that each tube Ts{w has dimensions C12° x 22°~% and due to the 2*("=1) overlap, each of the tubes Tfj

also has dimensions C52° x 22°~%_ but with a larger constant C5. Finally, note that the union U Tgﬁﬁ
KeGs—w
of these tubes covers the upper quarter annulus A, (0,2s — w) with bounded overlap. Indeed, the tubes Tf,;}h
are comparable to any of the tubes TSI, » With I C K, and it is this last property that motivated grouping
the I’s into cubes K and defining Ts{il)“ as we did above.
We begin with the following more elementary local average inequality for 0 < w < s, in which we restrict
the integration over R” to the tubes T8

s, w

2n
, for p <

< 27(257w)pap,n )
©) n—1

~

(9.28) Bho.is Qi

Toda Qi

L (T35
To prove this, we consider the L? and average L* bounds separately and then interpolate.

Step 1(a): local L? estimate

We first compute the norm of Ay, from L? (K) to L? (Tsﬁ)h) for functions f of the form f = Q}%, f =

Zlegs (K] A?;lf and with Ag,f = EE. For Iy € G4 [K], whose normal is e,, we will use the rectangu—

2w=25 and we will multiply by a modulation m (z)

lar convolver ¢, 5., (2) that has dimensions 27° x
that translates the tube [—23,25]7171 X [—228*1”,225’“’] to be positioned near TSI,(U’F. For convenience we
momentarily set

dj (Z) =m (Z) ws,Qs—w (Z) .
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We then have for f = QJ/ . f ,

||A25f||§2(|@|a -/ I@(é)f\@@fdg: / Fame x 0(6) famen v (€) de

S [t © @t = Y [ Fas i@ (e v) @

1,J€G,[K] 1,J€G,[K]

Note first that the supports of fé,Qs x1) and f;}{)% x 1) are essentially disjoint unless I ~ J. Next, if we define
I = ([—2—8,2—8]”*1 X [—2w—28,2w—25]) + e,

and I* by rotation, then we have
[Fhoa ¥ ()] S [(Senfihint)| 22727 11 (),

since

d
vt = | fL e 0] S H I

(]-(I)(I)Un—l) * @s,?sfw (Z) ~ ‘<S;}7f; h?;1>
—1 oo

where the quantity density satisfies,
(density) 27°("=D2w=2 = (density) |I*| = |[1g(ryon_1| =271
2—s(n—1)

25" (density) 17+ (2),

_ 92s5—w
92—s(n—1)9w—2s =2 :

Altogether then, using |T*| = 273("~12%=25 ' we have for f = Qj

029 Waefaqapay S [ [fhasv (o) at

—> density =

IeG (K]
2 no1\ 2
s Y / Senf )| 222 T (5)‘ des Y [(Saasmih)] (22T )
1eg. (K17 R" 1€G.[K]
2
4s—2was(n—1)g—s(n—1)gw—2s n—1 _ 02s—w n—1 2s—w n— 1
et p s 5 (st o 5 (s s ol
Iegs[K] Ieg,[K]

Step 1(b): local average L* estimate

We run the argument in Subsubsection 5.2 up until the estimate for Q; = Q; [K], where 27! ~ dist (I, J)
for I,J € G, [K], ie. 27t SO(K)=2""%or s —w < t < s. It is this restriction to large ¢ that yields the
geometric gain needed for the average L* estimate when I,J € G, [K]. Then for s — w < t < s we have

<( Hn) f7h1n><( »@n) fthrc>2

~

1,J€GL[K]: dist(I,J)~2-

<Y (S )]

I1,J€G[S]: dist(I,J)~2—t

0 [K] < Z 2 s(n=2)9t

5 2—s(n—2)2t2(5—t)(n_1) Z ‘<(Sn,n)_1 f7 h15”> '

Ieg.[S]

= 97D lQr |l o

which gives

> K]

t=s—w t=s—w

N
g
2

Errespil

Q

92— (s—w)(n— 2) —s(n—2) HQn ‘

—(2s—w)(n—2) HQ ’

LA(S)
Similarly we obtain
\I’<2 (2s—w)(n—2) HQ ‘

L(s)’
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and adding these results gives for f = Q’;{sl f,

(9.30) A ‘
L4(S
Step 1(c): local interpolation
Collecting the bounds (9.29) and (9.30) gives for f = Q’}(_Slf,
bt gy <
L2 ([ xn)
s« e,
L4 (M)
Now we claim that an application of the interpolation Lemma 31 yields,
2n
9.31 AaNnQn g177 ’ < 9~ (2s—w) e HQn 1 ’ , for p > )
( ) K, f LT’ |7/" ) p n—1

Indeed, the calculatlon at the end of the proof of Lemma 31 shows that if p > 2% then (with notation as

n—1’

in that proof) # = 2 — 1 and so

s—wn 1-6 s—w1f s—w n— 2s—w | 25—w n—2 s—w n— 2s—w n
{2_27 22} {2%} _g-ipungi(Bpugounilly  g-2spwniio(fown)g 2—(25—@6;,",

, _ 1 2s—wn—-2 (2s—wn é—l
e = 5w 2 2 2 2)\p

n (4 1 - n—1 n n-1 2n
4 4 \p 2 p  2p Pmn 1)

This completes our proof of (9.28).

where

9.3.2. Step 2: local expanded probabilistic argument. Now we turn to proving the expanded analogue of (9.28)
given by,

(932) <2—Tp( )2 (2s—w)pep,n

an?{sl’I]f‘

Qs

Ee.(s Lo(PE, 1)

s,w

(S)
2n

-1’
where 6 > 0 and Ps{(w [r] is the expanded pipe corresponding to the tube Ts{(w. This is proved in the same

way as the case of the tube Tfi;)h in the previous subsubsection, except that we use the geometric decay in r
derived from integration by parts, to compensate the geometric growth in r that arises from the expanded

pipes.
We first define fou to be the vertical cone that is the complement of the union over 0 < r < s of the

for all K € G5y, [S] and p >
n

S
expanded tubes Tfj (r) in the quarter annulus A4 (0, 225*“’), and set V; = U U VSIZ) Note that
w=0 K€G,_.,[5]
the cone Vs will be ‘thin’ if the positive constant C,, in Definition 44 is large. Now we repeat the above
proof of (9.28), but with expanded pipes P, [r] in place of the tube TX,, to get (9.32). Indeed, the L? and
average L* estimates (9.29) and (9.30) are now multiplied by an additional factor Cs27"% for some § > 0,
which percolates through the interpolation to give (9.32).

However, we must choose the constant C,, in Definition 44 to be possibly even larger than it already is.
Namely, given a small positive constant € satisfying 0 < € < €, ,,, choose C,, such that the vertical cone V;
is so thin that the Direct Argument in Subsubsection 9.2.1 produces a bound that is C'2%® times as large
as that obtained in Subsubsection 9.2.1,

SN’V - 9 - 4
(Ts AT Qu £, Pyg) | < 227550 | £l gl o -

§'u)7

(9.33) sup

ac29s(S]

This bound will prove to be an acceptable estimate if we choose ¢;,,, > ¢ > 0.
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Next we adapt the arguments surrounding (9.31) and (9.22) to conclude that

< 2—€p nS

2
oNQy an ,  for K € Gs_yy [K] and p > r
Le(PE,[r]) ™

LP[S] n—1"

[ Ts A5 Qi |

gg[s

Indeed, the following three steps are almost verbatim analogues of Steps 1(a), (b) and (c) above, and we
include the details only because of the importance of the estimates. We begin by noting that the analogue
of (9.21) in the case 0 < w < s is,

(9.34) ‘ / e P@EQR I f (x) da| S Cn2 TN / ‘aNQnst{g fla)|dx,  for &€ PE,[r].

Step 2(a): local expanded L? estimate

We compute the norm of Ay, from L? (K) to L? (PE,

S,w

[r ]) for functions f of the form f = ’}551 =
Y16 (K] A?;lf. For Iy € G [K], whose normal is e,, we now use the cylindrical convolver ¢, (2)
that has outer dimensions 27°7" x 2¥~2% and we will multiply by a modulation m (z) that translates the
pipe whose convex hull is the tube [~25+7,2547]" ™1 x [22s=w 925-w] {0 be positioned near PX, [r]. For
convenience we momentarily set

w (Z) =m (Z) 9075‘,25—11; (’Z) .

We then have for f = Q?gsl f,

||A25f||ig(|@|a -/ (@(5)\2\@@)\2%: Fame ® 0(6) a0 (6) de

Rn

S [t © @t = ¥ [ Fs i@ (e ) @

1,J€G,[K] 1,J€G,[K]

The supports of fg o, %4 and f{ ,, * ¢ are essentially disjoint unless I ~ J. Next, if we define
IE)k ['F] = ([_2—5—7‘, 2—s—r] n—1 « [_211;—257 2w—2s]) +e,,

and I* [r] by rotation, then we have

’fé@s *w(z)| <9~ (s+r)N ‘<Snn N})h?§;1>‘229 11)29 11*[ ]( )

since

dfg

R e 245" (density) 11 (2).

I R (E Y E
(oo}

upon applying (9.34) to
N An—1, - - Npn—1,
OV AT = (ST ) OV
Here the quantity density satisfies,

(density) 2=+ =Dou=2e —  (density) |I* [r]] = | La(r- a1 = 27+
9—(s+r)(n—1)

2s—w

—> density =

92— (s+r)(n—=1)9w—2s =
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Altogether then, using |I* [r]| = 2= (T (=1)2w=2s e have for f = Q. Lf

af ooy S 5 [ fhawrv i)l ae

1€G,[K]

1 2

5 2—2rN Z / Sn,'}]f7 h’r[z7;1>‘ 225—w2(S+T) 3 1[*[T] (é’)‘ dg

I€G.[K]

2 1N 2

< 97N Z ‘<S;}7f, h?;;1>’ (22s—w2(s+r) 21) s

Ieg,[K]
_ 272TN24572w2(s+r)(n71)275(7171)2w72s Z ‘<S;717f7 h?;;1>}2

1€G,[K]

— 2—27"N22$—w Z ‘Q—SN <S,{_’%f, h?’;1>‘ < 2—27N225 w HQ ‘

IeG.[K]

Step 2(b): local average expanded L* estimate
We begin by using (9.34) to estimate the L* (Ps{(w [r]) norm of Ay, f when f = Qg ,f:

4
4 — 4
||A2$f||L4(R<{<w[T]) - /PK [r] )fq)’Qs (E)‘ df - / [r] Z f‘I’ 26 d
s, w g s W Ieg
4 2
S gmHrrIN / S NI, (9| de = 2mirN / ST ONFLL (€N L. (©)] de
PE,[r] I€G,[K] PLIr] 1,Je€G,[K]
2

e [N eV S @)

K
s,w I,JEQS[K]

Then we run the argument in Subsubsection 5.2 with this estimate up until the estimate for €, = Q, [K],
where 2% ~ dist (1, J) for I,J € G5 [K], ie. 27 SU(K)=2""%ors—w <t <s. Thenfors—w<t<s
we have

2

QK] S 274N > 27002\ (S) ™ Fohre ) ((Sn) ™ F i)
1,J€G,[K]: dist(I,J)~2—t
< gNystn)y 3 ’<( Se) " Fihrie) !

I1,J€G[S]: dist(I,J)~2—t

4
5 2—47"N2—s(n—2) 2t2(s—t)(n—1) Z ‘<( . 71) f7 hy. N>
Ie€gs[S]

= iyt Qg

which gives

zs:\lft[K iQt[ <2 4rN 22 n2) s(nQHin ‘

t=s—w t=s—w

A

~ 2—4T‘N2 (s—w)(n— 2)2—s(n 2) HQ ‘ _2—47’N2 (2s—w)(

LA(S)

k],

Li(s)
Similarly we obtain

\I/<2 4rN2 (2s—w)(n—2) HQn ‘

and adding these results gives for f = QY . f ,

Aamnf‘ <2—4T‘N2 (2s—w)(n—2) HQ ‘

L4(An)
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Step 2(c): local expanded interpolation
Collecting the bounds (9.29) and (9.30) gives for f = Q’;(Tslf,

2s—w

HA25A3F nQn 1,7]f‘ 5 2= 27’N2 HQ ‘
L2 |w| An ) L2(K)
Sk -1, 4rNo— 2w n_2
sAa"" Qe S 72 ’ f’m(s
Now we claim that an application of the interpolation Lemma 31 yields,
Awast , - S, 2—7‘N2—(2S—’w)8;," "
P*x0)

Indeed, the calculatlon at the end of the proof of Lemma 31 shows that if p > =", then (with notation as
in that proof) 6 = 5 — 1 and so

17
23 w n—2 2§ w 2§ w n—2 2s—w 2s—w n—2
2~ ’r‘N27 - :| |:2 ’I‘N2 :| — 92~ ’I‘sz -5 2(72 + == 5 )9

—w n—2 2s—w

z 2( 2 %) —9-T"No— (25— w)Epn

— 2—TN2—

o _ 1 {2s—wn—2_<23—wn> <4_1>}
pnoT 25 —w 2 2 2 2 P
_ n-—2 n<4_1>:n—1_n:n—1(p_ 2n>
4 4 2 P 2p n—1

This completes our proof of (9.32).

where

9.3.3. Step 3: local deterministic argument. We use Khintchine’s inequality to recast (9.28) as a local square
function estimate,

P 2n
9.35 HSKY] <2 (2s—w)pep,n n— 1,77 ) 7 I =
(9.35) s || o iy Q" f o(s) orp>
where the local square function 81{(7 1 is given by,
1
9 2
(9.36) SErp=sp Q= 3 ‘TS AL f‘ :
Tegs[K]
and where S7. _ is defined in (9.26). Note also that,
2 n—1 2 n—1 2 K
(9.37) ’s;sf = ‘TS N f‘ -y ¥ ‘TS AT f ’ - ¥ ‘S " ‘
Ieg,[S] KEGs_w[S] IEG[K] Keg,

We have A, (0,225_“’) C U Ts{ibh C A} (0,225_“’), where the union has bounded overlap Cip,
Ke€Gs—w[S]
and A% (0,2%°7%) is a fixed expansion of the quarter annulus A, (0,22°7*). Let g € )i (A4 (0,2%7w))
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with ||g||Li"l(A+(O 22s—w)) = 1. Then we have

2 /Ku\sff’f\ﬁ IS5 g I 5

KeGs_ | Gs—wlS]
P "

K p’

= HS o ‘ Ly (TX:F) Z gl (T555)

egg K€eGs_w[S]
g 4

(25—w)pep,n »77 ' ’

S Z 2 P Q fHL (S <Clap ||g||Lp’(Ajr(0722sw))>

Kegs w[S]
S 012p2 @ QU ooy 19l o (a5 0.220-wy) 27 E T QU

9.3.4. Step 4: expanded deterministic argument. From (9.32) we have the estimate

< o (5 gy
(PE,I1) ™

where Pslﬁbh [r] is the expanded pipe corresponding to the tube Tslfu’,h. By Khintchine’s inequality this is
equivalent to the square function estimate,

)

(S)

’TsAa“ Q.

Q KTs

Qgs

)PEp n n 1

B 2
(9.38) Hsff;’f‘ < g7r(V- . forp> n—”

-1

Lr(PXK, [r])

where Sj{f 1 f is the local square function defined in (9.36). The only difference between the left hand sides of
the inequalities (9.35) and (9.38), is that the second inequality is integrated over the expanded pipe PF, [r]
instead of the tube TSIi;F. As a consequence, we obtain by following the previous argument that,

K, K
/K ST’Snf’g = HS o ‘LP PX,[]) HgHL”'(wa[T])
K€G, (8] Falulr] Keg.- w[s
1 1
= > H 21 Lo (PE, 1)) 2 Mol o gy
KEGs_w[S] K€EGs—w[S] ’
(v-22) ' ¥
—rp(N—"5= (2s—w)pep,n n—1,n r(n—1) P’ v
5 Z 2 2 P QK f‘ L (S) <C]ap2 ||g||Lp’ (Ai(()’225w)))
KeGs_w[S]
P N—222L) (25w pon n—1, ~ 9~ T0g—(25—w)ep n n—1,
S C1ap ( i >2 (2s=wler. ||Qs 1anLp(s) ”gHLP’(Ai(O,Q%*“’)) r 272w |IQ; 1anLP(S’) ’

where 6 = N — 2"1;1

Now sum in 7 to obtain

/ sieslJos S S [ [skle=3 X flstils
Ap(02227) \ geg” w[s K€G, (8] r=0 7 Pulr] =0 K€gs- ol
— —rdog—(2s—w)ep,n n—1, —(2s—w)ep,n n—1,
R e L
If we take the supremum over g as above, i.e. g € ¥ (AJr (0,225*“’)) with ||g]| (3) =1, we
LA2) (A4(0,2297w))

obtain

"gqff’ﬁsnf‘ < 9—(25—w)ep,n

n—1,
Qs anLP(S) :
Kegs—w[s] Lp(A+(072257w))
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Then we have from (9.37) that

2
Sh s ‘ - ’SK;nf’
Tl e (A (0,225 w)) KEQZ [S] "
. LP(A4(0,2257w))
. —(2s—w)ep,n n—1,
< \s a0l S 2@ Q]|
KEQ s—wl Lr(A4(0,2%7w))

which gives (9.27) since 2=@s—wlep.n < 92=sepn for 0 < w < s.
This completes the proof of (9.24).

9.4. Wrapup. Combining all of the estimates in this section, and taking into account the change of para-
meters from m,d to w,r for the estimates with d < 0, we obtain the desired bound for the disjoint form,

kd
B, (o) = |3 Bk, (h0)| S 1l Lol

d>0m=1k€eZ

k d,m
dlSJOlnt

d<0m=1keZ
where if (I,J) € P¥ and £ (I) = 27° in the above sum, it is understood that —s < d < oc.
More importantly, we also have the norm expectation (9.24),

‘TS-AaN nQn 1, nf‘

Egg |B}:101?3?)1;nt (f? g)| = Egg < ||f||LP ||g||LP ’

S22t Al

g1s] Lp(B(0,229))

for p > =%, which will play a critical role in completing the proof of our main theorem in the next section.

10. COMPLETION OF THE PROOF OF THE PROBABILISITIC EXTENSION THEOREM 2

.
on n—1,
A""QS T fo 25

Consider the norm for each fixed f € LP, s € N and a € a, and

Lr 1R”\B(0,225))\"
choose gf.s.a € LP (A,) such that

(10.1) D139,

Swmn—1,
-1,
HAU,NWQ? nf@,Qs

0 for J € D [B(0,2%)],

|<TS~Aas'€"" (Qgil’nf)gs ,gf,S,a>| and ||9f,s,aHLp’()\n) =1

Lr 1R7L\B(01225)>\n)

Since Bholvsgiﬂnt (Aas"’"Q?—lvﬂﬁ gf’s,a) vanishes by the assumption on the Alpert support of f in (10.1), we
have

Sm 7 4 — Sm.v -
Biors) [(Ts A (QUF) 5,0 9700 = Bogusy (T AT (QUTH7F) 5,0 91.50)|
B T Asm,n (Qn—l,nf) + B T Asmn (Qn—l,'r]f) BUPPET T ASK‘W (Qn—l,nf)
below SAa s 25 9f,s,a above SAa s 252 9f,s,a disjoint SAa s 2g 7
S _
AT lgpsa
Lp
from estimates proved in previous sections. Thus we conclude from this and (9.24) that

‘TS.Ai ’

N
Eggs[s]

A

sup 2~ °mr®
a

|Lp’ ’

EQQ[S]

—

Sk, n—1,
+ Eggs[s] A7 Qs nf<I>,2$

/S 265(9]

Shy~m—1.
—1
‘Aa’“’Q? " fo 25

LP(1gn\p(0,225) n Lr(B(0,2%9))

-

= B [(TsAZ=n QM) 5y 2 97,580 | + Bho,is Aim'nf@is

L (B(0,22¢))

Sk, — — ; _ _ ;
Aa 77Q";L I,TIfHLP ||gf,s,a||Lp’ +2 En,pS ||Q’;L I,TIfHLp A D EnpS ||f||LP ,

A

sup 2~ Fnrd
a
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since the multipliers Af,”*" and the pseudoprojection Q=" are both bounded on L by the square function
estimates (2.1). Finally we have

1
E2§[S]

S, > S~
’TsAa meLP = Blors || D_ TsAa"Qu M f
s=1

)
o
< D Bl
s=1

Lp

o0
Sk — _ .
T Qs <3 2= £ S
s=1

This completes the proof of the probabilistic Fourier extension inequality in Theorem 2.

11. CONCLUDING REMARKS

The two weight testing methods used in this paper might also be applicable to the following open proba-
bilistic problems:

(1)

(2)

(3)
(4)
(5)
(6)

proving a probabilistic analogue of the Bochner-Riesz conjecture or even the stronger local smoothing
conjecture. In the context of the (nonprobabilistic) extension conjecture, see Sogge [Sog] for a proof
that local smoothing implies Bochner-Riesz, and Tao [Taol] for a proof that Bochner-Riesz implies
Fourier restriction,

replacing the sphere in Theorem 2 with any smooth surface of nonvanishing Gaussian curvature, and
possibly with appropriate smooth surfaces of finite type (and with altered indices p),

replacing the Fourier kernel e=#¢ in Theorem 2 with a more general kernel € (z, ),

to multilinear probabilistic variants of the extension conjecture,

deciding the endpoint case ¢ = p’Z—ﬂ when 2 < p < f_"l in (1.2),

and finally to the much more challenging problem of boundedness of the maximal spherical partial
sum operator in a probabilistic sense.

The main open problem is of course the full Fourier extension conjecture (1.1).
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