A PROBABILISTIC ANALOGUE OF THE FOURIER EXTENSION CONJECTURE

ERIC T. SAWYER'

ABSTRACT. The Fourier extension conjecture in n dimensions is equivalent to

2n

||T1U0f||LP(An) < C”.f”[,p(B"il(o%)) ) p> I

where Tf (§) = [, (0.1) e @) f (2) dx, Up C Bp1 (0,3) CR*™L, @ (2) = (:;;,,/1 - |m|2) and Ap is
Lebesgue measure on R™. Noting that f =>"; ¢ A}’,Kf, we prove that the following probabilistic analogue
of the Fourier extension conjecture,

Eyo Ty, »_ + A7, f S Clflizr(B,_1(0,3))
19 LP(An)

holds for all f € LP (Bn_1 (0, %)) if and only if p > anl. The operator E,g averages over all sequences of
+1, where G is a grid of dyadic subcubes containing Uy, and where A}];n is a smooth Alpert pseudoprojection,
resulting in a ‘martingale tranform’ analogue.

By Khintchine’s inequalities, the probabilistic analogue of the Fourier extension conjecture is equivalent
to the square function estimate,

fsra | :

n
1<pSoo,

S ”fHLp(Bn_l(O‘%)) , if and only if

La(Ayp) n

where

2
— -1,
STonf = Z ‘T]'UO A}L;n n f
Y

To prove this probabilistic analogue of the extension conjecture, we use frames for LP consisting of

smooth compactly supported Alpert wavelets having a large number x > 4 of vanishing moments, along

with stationary phase and probabilistic interpolation of L? and L% estimates, as part of a two weight testing
strategy pioneered by Nazarov, Treil and Volberg. We use probability to obtain L* estimates with the
correct decay when dealing with resonant subforms, thus circumventing the most challenging issues arising
in the Fourier extension conjecture.
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1. INTRODUCTION
In this paper we consider a probabilistic analogue of the Fourier extension conjecture (Theorem 5),

Conjecture 1. Letl < p,q < 00, 0,1 be surface measure on the sphere S*=1, and F (u) = Jan e~ 8dy (x)
denote the Fourier transform of the measure p. Then

oy ([Funerde) so([ r@rae@) . feren,

if and only if ¢ > 2% and % + %% =1.

1.1. The probabilistic extension problem. Let ® (z) = (a:, \/1-— |x2> € S"~! be the standard para-

metization of the northern hemisphere of S*~1. Let B,_; (0, %) be the ball of radius % centered at the origin
in R*~1, and define

— —i®(x): dx n
(1.2 Tr©= [ 0o ey €ER

—

for f € LP (Bn,l (07 %)) Thus Tf = FO. (fA\n—1) = s (fAn_1), where ®.v denotes the pushforward of
a measure v under the map ®. Then the Fourier extension inequality (1.1) is equivalent to boundedness of

the operator T'1y,, i.e.
(1.3 17200 flar,) < C I ia((0.3))

for a fixed subcube Uy of B,,_1 (0, %) (after considering finitely many rotations). The Jacobian m is
roughly 1 on B (0, %) and can be absorbed into the function f (z) - we will often abuse notation by simply
ignoring it.
Now let {A?_;l’”} . be the family of smooth Alpert pseudoprojections
: Ie

-1, -1 s
A?m T = Z <(SK777) f, ?;n> h’(II;IZ
a€l, 1

on L? (R"il) as given in Theorem 7 below, where G is a dyadic grid containing Uy. Then we can rewrite
(1.3) as,

(1.4) Tiy, Y A f

Ieg

<C Hf”LP(B(Ov%)) '

La(An)

The probabilistic Fourier extension problem is then to decide when the following ‘martingale transform’
analogue of (1.4) holds,

(1.5) Bl T, Y+ A7 f

Ieg

< Clfllr(B(0.2)) >

La(An)

where the expectation B, is taken over all choices of & for each I € G. We point out that it is not hard to
see that the probabilistic analogue (1.5) fails for the same pairs (p,q) that (1.1) is currently known to fail
for - see the discussion below.

By Khinchine’s inequalities, (1.5) is equivalent to the square function estimate

(16) HSTlUOfHL‘I()\n) 5 ||fHLP(B(07%)) ;

where St1,, is the square function defined by

N

2
(1.7) St f=| 3 ’TlUOA?;l’"f
IegU]
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1.1.1. A precise description of the martingale transform. We begin with a more precise description of
the ‘martingale transform’ inequality (1.5), and then establish a reduction to certain Alpert projections.

Let G be a grid in R*™!, and let {A?;I}Ieg be the orthogonal family of Alpert projections A’};l =
Y aer,_, <f, h?.;l’a> h’}.;l’a on L? (R"™!) as in Theorem 7, and let {A?_;l’"} . be the frame of smooth
n— ; ; ; Ie

Alpert pseudoprojections on LP (R"~1). For a = {a;},.4 € {1, —l}g and f € LP (R"!), define the Alpert
martingale transform A by
Aaf = Z ar A?;l fa
Ieg
which is } ;. + Ar, f for a choice of & determined by a.
Given linear operators L and S with S invertible, define the conjugation of L by S as

L% =SLS™.
Let S, be the bounded invertible linear map on LP given in Theorem 7, that takes Alpert wavelets h?;l’a

to their smooth counterparts hf " = h?;l’a * Opocr)- For a = {ar};cq € {1, ~1}Y and f € L? (R"1),

K
define the smooth Alpert martingale transform

A= ap AT =Y £ AL
Ieg Ieg
by conjugating A, with the bounded invertible map S ,, i.e.
Sk, — — — n— n— — n— n—1, n—1,
A f = S AaSiif = S D ar <Sml7 f, hml> nt =S <sﬁ,}7 f, h,m1> Rt =N "ar AT,
Ieg Ieg Ieg
2
Note that both A, and Ag’“’ are involutions, A2 = (Aﬁ"*”) =Id.

Since we will be using the notation LS+n for various operators L = A,, AaPs, A QY etc., we declutter
the exponent by writing
L* = L%,
when the bounded invertible linear operator is S ;.
Then we identify 29 and {1, —1}g and equip 29 with the probability measure y that satisfies,

/LA(E)EM({E|EC2A}):||2EI;|, E c 2" with A C G finite,

where |F| denotes cardinality of a finite subset of G, and y ({E | EC 2A}) is the conditional probability of
E given that F C 2% (here 2% is a set of y-measure zero, and see e.g. [Hyt] for a construction of such a
measure 1). We define the expectation operator ]E‘z‘g by

Bl F = /g F(a)du(a)
2
for F' a nonnegative function on 29 = {1, —1}g7 so that (1.5) becomes,

18 =Bl [ [T, (a0% 1

Ty, (A)* /]

< 1 .
100, roony @ = Wi (a0.0))

1.1.2. A reduction of the martingale transform inequality. We now replace 1y, (Aa)‘ [ =14,8x,AaSy, in
(1.8) with

(AaPU)‘f = Sm,n-AaPUSH_,% = S/{,nAa Z AI;HS;’%JC = Z ar A}];,{ f7
IeglU] IegU]

where Pyg = ZIEQ[U] Ar..g is the Alpert projection of a function g in which the sum over cubes I is
restricted to those contained in U. We claim that this new inequality is sufficient for (1.8) in the case

U =10,

is the G-grandparent of Uy, where we assume 3Uy C U, i.e. Uy is an interior grandchild of U.
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More precisely, we will show in a moment that (1.8) is implied by the following truncated inequality,

(1.9) B T(AaPU)‘ fHLQ()\n) ¢ ”f”L"(B(Ov%)) ’

in which we have replaced 1y, (Aa)* f by the truncation (A.Py)® f = Yreg) a1 A7, f. This latter
inequality is what we will prove in the remainder of this paper.

Lemma 2. The probabilistic Fourier extension inequality (1.8) is implied by the truncated probabilistic
extension inequality (1.9).

The proof of Lemma 2, given at the end of the next subsection on main results, also gives the following
lemma upon removing the expectations E’z‘g and the random coefficients a; from the proof.

Lemma 3. The deterministic Fourier extension inequality (1.3) is implied by the truncated deterministic
inequality,

(1.10) Ty ALS <Cllflpo(p(0.3)) -

Ieg(U] L1(An)

1.2. The main results and a brief history. The following Fourier extension conjecture arose from un-

published work of E. Stein in 1967, see e.g. [Ste2, see the Notes at the end of Chapter IX, p. 432, where

Stein proved the restriction conjecture for 1 < p < 37‘:‘—11] and [Ste],

o ([rsere) o[ peream) etz

Our probabilistic analogue of (1.11) is the following conjecture for the case p = ¢, where (.Aa)* = SunAa (waz)_l
is the conjugation of the martingale transform A, with the bounded invertible linear map S, , used in con-
structing the smooth Alpert wavelets in Theorem 7 below.

Conjecture 4. For k > gl and notation as above,

2n
H L) < . .
(1.12) By || T1y, (Aa) f‘ iy Hf||Lp(B(OV%)) ) if and only if <P < oo,
equivalently, the square function estimate,
. . 2n
(1'13) ||ST1U0f||Lq()\n) S ||fHLp(B(o,%)) s if and only if n—1 <p < o0,
where

2

2
St f=| 3 ’TlUOA?;l’"f
IegU]

Theorem 5 (Probabilistic extension conjecture). The probabilistic Fourier extension inequalities (1.12) and
(1.13) hold in all dimensions n > 2.

Here the implied constant in < depends only on harmless quantities determined by context, which in the
display (1.12) are n, p and Up.

Sections 2 through 10 are devoted to proving Theorem 5. Some concluding remarks are made in Section
11.

Acknowledgement 6. I am indebted to Hong Wang and Ruiziang Zhang for pointing out serious gaps in

earlier versions of this paper, which claimed stronger results.

11t seems likely this conjecture holds for the classical Haar expansion (it is of course implied by the Fourier extension
conjecture), but we need x > % > 1 in our proof of the smooth wavelet decomposition in Theorem 7.
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There is a long history of progress on the Fourier extension conjecture in the past half century, and we
refer the reader to the excellent survey articles by Thomas Wolff [Wol], Terence Tao [Tao] and Betsy Stovall
[Sto] for this history up to 2019, as well as for connections with related conjectures and topics. Recently,
a proof of the Kakeya set conjecture in R3 has been posted to the arXiv by Hong Wang and Joshua Zahl
[WaZa]. See further references below.

The following (;1), é)—rectangle for boundedness of the extension operator illustrates this progression of

positive results:

01 % * * * * * C * * *x *x *x *x *x (L1)
* Kk k Kk Kk *k k k k kK k * *k *k *k *
* Kk k k *k A Kk Kk k k k * * *k *k *
: B % x * x * % % %

Sk ok ok ok ok %k

TR I

T

(0,0) (1,0)

n—1n-1 1 n—-1 11
A= dB={|: dC={_-, ¢
< om 2 ) o (2’2n+2> o (2’2)
The region marked with s is where boundedness of the extension operator (1.1) is known to fail, i.e. on and

above the line % = 2;711, and strictly above the Knapp line joining A to (1,0). The probabilistic analogue

(1.5) also fails for these pairs (%, é), as is shown below. The point B on the Knapp line is the Stein-

Tomas point, where boundedness is known from their 1975 result. Since the set of points <f, 7) for which

boundedness holds is both left-filled by embedding of LP spaces on the sphere, and convex by interpolation,
we see that as of 1975, the region consisting of the line joining B to (1 0) and everything to the left of it,

was known to be bounded for the extension operator. The point ( ) was added by Tao [Tao4] in

2+27 2+

2003, and points slightly better than ( ) were added by Bourgain and Guth [BoGu, BoGu] in 2018.

2+ 2+
Note also that any progress along the open diagonal line joining (0,0) and A, such as showing that (1 ;)

is bounded, yields boundedness for the convex hull of (5, %) and the line 1 i 0, as well as all points to the

left. Of course, even if the open diagonal segment joining (0,0) and A was known to be bounded, this would
still leave the open segment of the Knapp line joining A to B.

Our probabilistic theorem shows that the boundedness region for the probabilistic extension conjecture
includes all points not already eliminated for the extension conjecture, except possibly for the open segment
of the Knapp line joining A to B. Indeed, the conditions q > p ”*i and 2”1
extension inequality (1.1) to hold, see e.g. [Tao]. The same arguments show that these conditions on p
and ¢ are necessary for the probabilistic analogue (1.5) to hold, upon considering individual smooth Alpert

wavelets Al (see below for definitions). Since o,_1 is a finite measure, embedding and interpolation with

the trivial L' — L bound, together with Theorem 5, prove the probabilistic extension inequality for this

range of exponents, except for the range ¢ = p’”+1 and 1 < p < -#%. Since the Stein Tomas result [Tom]

/n+1 2n

captures the subcase of (1.1) when 1 < p < 2, this leaves only q = p and 2 < p < -2 open in the

probabilistic extension conjecture.

1.3. Quick overview of the proof using smooth Alpert wavelets. We begin with a short and informal
narrative.

Narrative: In the theory of nonhomogeneous harmonic analysis, and especially that of two weight
norm inequalities for the Hilbert transform, Nazarov, Treil and Volberg initiated the systematic use
of weighted Haar wavelets to analyze boundedness. The Hilbert transform has kernel %75 , and
thus the action of a Haar wavelet against such a kernel typically has geometric decay away from the
origin, which permits ‘error’ off diagonal terms to be controlled. This two weight theory has concen-
trated mainly on the Hilbert space case p = 2 in the past couple of decades, but more recently LP
estimates and square functions have attracted attention, especially with the recent work of Hytonen
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and Vuorinen.

At this point it becomes conceivable that square function and two weight techniques might be ap-
plicable to two weight LP norm inequalities for the Fourier transform, such as the Fourier restriction
conjecture, equivalent to the norm inequality with measures do,,_1 and dA\,, in R",

IF (fon-Dlleing S M e,y -

However, the kernel K (x,€&) = e~%*¢ of the Fourier transform F is purely oscillatory with no decay
at all, but this is partially offset by the curvature of the support of o,,_1, that produces decay from
the principle of stationary phase. Moreover, the action of a Haar wavelet against this kernel will be
small if there is little variation of the kernel over the support of the wavelet (i.e. long wavelength),
since the wavelet has vanishing mean, but this gain is limited by the absence of higher order vanish-
ing moments in a Haar wavelet.

Addressing this defect, Alpert constructed wavelets with similar properties to those of Haar, but
with additional vanishing moments that confer extra geometric gain. But even with Alpert wavelets
in place of Haar wavelets, there is no geometric gain when the wavelength of the kernel is small
compared to the size of the wavelet, due to the abrupt cutoffs in the dyadic construction of these
wavelets.

In this paper we construct smooth Alpert wavelets that permit geometric decay when the wave-
lengths are small, i.e. when there is sufficient oscillation of the kernel over the support of the wavelet
to permit gain from repeated integration by parts. Thus we will have gain except in the case of
resonance, when there is neither sufficient smoothness nor oscillation in the restriction of the kernel
to the support of either the n — 1 or n dimensional wavelet. In these resonant situations, which form
the core of difficulty in the deterministic Fourier extension conjecture, we must appeal to probability
in order to obtain the desired L* bound needed for interpolation. The remainder of the paper holds
without the intervention of probability.

Our proof of the probabilistic Fourier extension conjecture uses some techniques arising in the two weight
testing theory of operator norms, [NTV4], [Vol], [LaSaShUr3|, [SaShUr7], [AlSaUr] and [SaWi], that were
in turn based on older work with roots in [FeSt], [DaJo], [Saw] and [Saw3], and followed by many other
papers as well, such as [Hyt], [LaWi], [SaShUr12] and [HyVu] to mention just a few?. One of the main
new ingredients used here is the construction of compactly supported smooth frames in LP with derivative
estimates adapted to the support, and as many vanishing moments as we wish. In fact, we will show that the
wavelets h(ILZ in the following theorem, can be constructed in the spirit of symbol smoothing, as appropriate
convolutions of a certain approximate identity with the Alpert wavelets in [Alp], see also their weighted
versions in [RaSaWi].

As already noted, for the proof of the probabilistic extension conjecture, it is enough to prove (1.9),

n—1,
Egg T Z ar A];,@ "f SIllze -
IegU] Lp

However, we begin by writing the Fourier bilinear form <T (Z reg) M A?;;lm f) : g> as a finite sum of

Rn

subforms

Br(f.9)= > (T(ar2p," 7). 850)

(I,J)eP

230me of the deepest results in testing theory, namely the good/bad machinery of Nazarov, Treil and Volberg in e.g. [NTV4],
the functional energy from [LaSaShUr3], the two weight inequalities for Poisson integrals from [Saw3], and the upside down
corona and recursion from Lacey [Lac], are not used here. Some reasons for this are the lack of ‘edge effects’ in smooth Alpert
wavelets, the lack of a paraproduct/stopping form decomposition, the ‘niceness’ of surface measure on the sphere and Lebesgue
measure, and of course that the probabilistic conjecture is significantly weaker than the deterministic one. Indeed, the higher
frequencies are damped to a greater extent by expectation, and this is why Kakeya phenomena do not enter into probabilistic
arguments. On the other hand we make extensive use of pigeonholing into bilinear subforms according to the uncertainty
principle, and then applying square function techniques for Alpert frames.
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where P is a collection of pairs of dyadic cubes I € G[U] and J € D, and where A?;l’" and A7 are
smooth Alpert pseudoprojections in R*~! and R™ respectively. This decomposition into subforms follows
that used by Nazarov, Treil and Volberg in the setting of singular integrals with weighted Haar wavelets,
but using the uncertainty principle to compare sizes of cubes here. There are six main subforms, the below
Boelow ([, 9), above Bapove (f, ), upper disjoint and distal Bgips?sfnt (f,9),Biihe (f,9), and lower disjoint and
distal BZwer . (f, 9), Bigue (f,g) subforms. The first two subforms are handled by the classical methods of
integration by parts and stationary phase, but also use the smoothness and moment vanishing properties
of the Alpert wavelets constructed in the next theorem, while the next two upper forms also use tangential
integration by parts.

Finally, the last two most challenging forms, namely the lower disjoint and distal forms ?, are handled
using properties of smooth Alpert wavelets with expectation taken over involutive smooth Alpert multipliers.
While the deterministic form estimates for the previous four forms imply corresponding deterministic norm
estimates by duality, this is no longer true for the probabilistic estimates we obtain, and it is important that
we obtain the stronger probabilistic norm estimates in these cases. In fact, we will obtain L? and average
L* norm estimates for smooth Alpert pseudoprojections (essentially because these spaces have the upper
majorant property), which can then be interpolated to obtain the required norm bounds. However, this
argument fails without expectation, and so fails to obtain the Fourier extension conjecture, whose attack
requires far more sophisticated techniques. See Proposition 34, and Lemmas 35 and 36 below.

Here is the smooth compactly supported frame of wavelets for LP that we will use®.

Theorem 7. Let n,x € N with £ > 5, and n > 0 be sufficiently small depending on n and . Then there

are a bounded invertible linear map S, : LP — LP (1 < p < 00) satisfying

(114) ”Id 7SHJ]||LP~>LP < C"yp’r] )
and ‘wavelets’ {h(};*ﬁ}leb, wcr, and {h?;Z}IGD’ wer, (with Ty, a finite index set depending only on k and
n), and corresponding projections and pseudoprojections {AI;,{}IeD and {A?.K} defined by

Flrep

Drwf = 3 (Fohh) e and AL =7 ((Sen) ™ fihG ) BT

acT, acl'y,
satisfying
(1) the standard properties,
a, ~ _
(1.15) sl = e =1

Supp hy,, C I and Supphy, C (1+n)1,

1 \" 1
< Cp () — for all m >0,

nt(I)) JI1

/ . () 2% = /h‘}z () 2%z =0,  forall0<|a| <k.

Vm a,n
H hI;H
oo

(2) and for each a € T, the wavelets h,, and hy! are translations and L2-dilations of the unit wavelets

hyy.n and bl respectively, where Qo = |0, 1)" is the unit cube in R™,

A

a |QU| a a, |Q()| a,
(1.16) ht.,. = ”W Oose © 1 and W = WhQZm 0wy,

where w; : I — Qq 1s the affine map taking I one-to-one and onto Qo,

3challenging because of the resonance that arises when the cubes I and J are appropriately positioned and sized, with the
consequence that neither integration by parts nor moment vanishing can be put to use. In fact, it was precisely this difficulty
that led to the serious gap in an earlier version v4 of this paper, and which was pointed out to the author by Hong Wang and
Ruixiang Zhang.

AThis particular theorem does not appear to be in the literature on frames.
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(3) and for all 1 < p < 0,

(1.17) f= Z A f = Z AV with convergence in norm for f € LP N L?,
I€eD, acl’, IeD, acl’,
3 3
2 7 N 2
S A5 ~| X e ~ vy, for f € LPNLZ,
I€ED, acl, I€ED, a€cl,
Lo(®) Lo(®)

(4) and for all I € D,
%;n (ZI?) = h(éj:’ig (37) ’ f07’ UAS R" \ HU (Q) )
where H,, (Q) is the n-halo of the skeleton of Q defined in (2.4) below.
(5) and finally, the unsmoothed operators Ar.,, are self-adjoint orthogonal projections’,

| A if I=J
(1.18) A];,{AJ;H{ 0 i T4
Remark 8. This theorem shows that the collection of ‘almost’ L? projections {A}]ZZ}I - s a ‘frame’
’ €D, acl'y,

for the Banach space LP, 1 < p < oco. The case n = 0 of (1.17) was obtained in the generality of doubling
measures (4 in [SaWi].

Acknowledgement 9. [ thank Brett Wick for instigating our work on two weight LP norm inequalities in
[LaWi], Michel Alexis and Ignacio Uriarte-Tuero for completing in our joint paper [AlSaUr] the work begun
in [Saw6] on doubling measures, and Michel and Jose Luis Luna-Garcia for our work [AlLuSa] on LP frames.
Ideas from these papers have played a key role in the development of the arguments used here, as well as ideas
from past collaborations and other works. I also thank Cristian Rios for valuable discussions, suggestions
and critical reading of portions of the manuscript, including a fruitful week long visit to Hamilton. Finally,
I thank Ruizriang Zhang for many enlightening comments, and for pointing to several problems in the proof.

1.3.1. Organization of the paper. In the next section we will construct and prove the required properties
of smooth Alpert wavelets, and in Section 3 we introduce the extension operator and recall what we need
regarding stationary phase. This material is well-known but we repeat it here due to the explicit error
estimates we use. In Section 4 we discuss the initial wavelet decompositions into various subforms and
describe the classical and well-known decay principles we use. Then in Section 5 we turn to the interpolation
of L? and L* estimates using probability. Then in Sections 6, 7 and 8 we will control the below, above and
upper disjoint forms respectively in the deterministic sense. Then in Section 9 we will use probability to
control the lower disjoint form by averaging over smooth Alpert martingale transforms. Then we collect
these results to finish the proof of the probabilistic Fourier extension theorem in Section 10, and in Section
11 we make some concluding comments.

1.4. The initial setup. Fix a small cube Uy in R”! with side length a negative power of 2, and such
that there is a translation G of the standard grid on R®~! with the property that Uy € G, the grandparent
U= W(QZ)UO of Uy has the origin as a vertex, and Uy is an interior grandchild of Uy, so that

1
(1.19) Un,U € G with Uy C 3U.

Now parameterize a patch of the sphere S*~! in the usual way, i.e. ® : U — S*~! by

z=®(z) = (x,m - |x|2> = (a:hmg,...,xn_l,\/l - |x|2> .

For f € LP (Bn,l (0, %)) define
dx

(1.20) Tf(&) =F (Quf (x)dx]) = L o e—id’(w)ff (z) m,

3)

5The operators A

1., are neither self-adjoint, projections nor orthogonal, but come close as we will see.
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where @, [f (z) dz] is the pushforward of the measure f (z) dz in B,_1 (0, 1) to the patch of sphere ® (B,,_; (0,
lying above B,,_1 (0, %), and that we typically abuse notation by ignoring the harmless factor m. Re-
call that the Fourier extension inequality is equivalent to (1.3). The bilinear form associated to T'1y, in (1.3)
can be decomposed by,

(T1u, f.9) = <T1Uo (Z A;ﬁ;lf) : ZA?};H9> = Y (T, AR 0Y.)
(

Ieg JeD I,J)EGXD

where {Ag;ﬂ}.lev is an Alpert basis of projections for L? (R"), and {A?*;l}[eg is an Alpert basis of

projections for L2 (R"il). Using rotation invariance, the Fourier extension conjecture is shown at the
beginning of Section 3 below, to be equivalent to boundedness of T'1y,, taken over a finite collection of
patches @ (Up).

Notation 10. We are using the index n — 1 or n in the superscript of the notation A?;;l’"f for an Alpert
projection, to denote whether the wavelet lives in R"™1 or in R™. The index n in the superscript denotes the
smoothness injected by convolution in the construction of the smooth Alpert wavelets below. Moreover, we
usually suppress the index a € T' that runs over the set of all Alpert wavelets associated with a given cube.

However, in order to carry out the standard two weight approach to bounding T, it will be necessary

to fix x € N, k > 4, and instead expand the bilinear form <T(PU)‘ f,g> = <TZI€Q[U] A?;;l’”f7g>7
corresponding to the equivalent inequality (1.10), in terms of the smooth k-Alpert decompositions of f and

g,
UQ g ) = I;;7 ) ,];,.;g )
<T(P ) > 3 <TA” N >

(I,J)egG[UIxD

—i®(x)-€

so as to exploit the cancellation inherent in the oscillatory kernel e of the operator Tg.

Definition 11. A subset E of the unit sphere S~ in R™ is said to be a ball if it is the intersection of the
sphere with a halfspace, and is said to be a pseudoball with constant Cpseudo, if there are concentric balls B;
and By such that

(121) By C EC By and |B2‘ < Cpseudo ‘Bl|a

where |E| denotes surface measure on the sphere. We simply say that E is a pseudoball when Cpseudo
is understood from context, and we will sometimes define a ‘center’ of E to be the center (not uniquely
determined) of the balls By and Bs in (1.21).

Definition 12. Given a subset F' of Fuclidean space R™, we define the tangential and radial ‘projections’ of
F, onto S*™! and [0, 00) respectively, by

Ttan (F) = {2 €€ F} and meq (F) = {|¢|: € € F}.

Then for Cpseudo chosen large enough in (1.21), the subsets ® (I) and 7¢an (J) of the sphere S*~1! are
pseudoballs with constant Cpsendo, for all I € G[U] and J € D. For E C S*~!, we denote by —E the set
antipodal to E, ie. —F = {Q es"l: (e E}

We now divide the collection of pairs (I, J) € G [U] x D according to the relative size and location of their
associated pseudoballs @ (I) and 7¢an (J), as dictated by the uncertainty principle:

(1.22) GIUIxDCP U P,

where P = Py U | JPn URU X,
m=1

and P~ = {(I,-J):(I,J)eP},

2

)
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and where

Po = {(I,J)€GU]l XD :mpan (J) C @ (Cpseudol)}

P = {(I, J)EGUIxD:2" T C S and Tan (J) C @ (2" Cpsendol) \ © (2mcpslcudol> } , l<m<ecs,
R = {(I,J)€GUxD: @ (1) C Tian (Cpsendo)}

X = {(I,J)eGUIxD:J CRY and Tean (Cpseudo) N (2U) = 0} .

Note that there is some bounded overlap among the pairs in this decomposition, but this overcounting is
inconsequential. Finally we point out that it suffices to show that

-1, )
> (T AR £08509)| S 1l gl
I,J)eP

since (I,.J) € P~ if and only if (I,—J) € P, and this amounts to replacing the kernel e~**(®)¢ with the
kernel e?®®)€  for which the estimates obtained below are identical.

1.4.1. Proof of reduction to the truncated inequality. Here we prove Lemma 2.
Proof of Lemma 2. Using f =3 ;4 A?;“’f from the first line in (1.17) of Theorem 7 below, we writeS
Lo, (Aa)* f = Lo, Y ar A f =10, S ar AN F 410, Y agen, ANl f = L3S + L3,
Ieg Ieg[U] k=1

since 1y, A7, M f vanishes if I ¢ G[UJU {x(Us},_ . Indeed, Supp A}, " C (1 + 1)U which is disjoint
from Uy if 1 gé GlUlu {T((k)Uo} We will now show that

(1.23)  Bho ITL3flle = Bho |Tly, Y. ar AL f| SEhG|T > ar A7 f||
IegU] Ie Ieg[U] La
a n—1
sup [[TLE fll. = SUP T1g, Zaﬂ'(k)UO Aﬂ(kn}?o - f S ||f||LP(B(0’%)) ’
a k=1 La

which is easily seen to complete the proof that (1.9) implies (1.8).

To see the first line in (1.23), choose a rectangle Ry in R™ with base Uy and height 1 so that Ry N Sr-1 =
® (Uy). Then ®,1y, = 1g,P., and since Flg,F ' is a bounded Fourier multiplier on L4 (R") for all
1 < ¢ < 00, we obtain

Bl ITLyfll o = Bl | FO1p, > ar A" f

1€G[U] L
= B | Fln® 3 ar AL =B |(FlaF ) Fe Y ar A1 S
Tegu] La 1€G[U] L.
S By |[FO. D ar AR =BT Y e AL S
Ieg(U] La IegU] La

Now we turn to proving the second line in (1.23). Let ¢ be a smooth bump function that is 1 on Uy and
supported in U. Then arguing once more as above,

IT10, L5 fll o = |FR 0L fll 1o = (| F LRy @ LS £l 1
|FLlg, F ' FOQLS ||, SN FOLSfll e = ITYLS fll 1o

61 thank Cristian Rios for pointing out this simplification to an earlier proof.
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where
oo o0
1, -1
VIS =0 arwn, Al f =3 anoou, (Lo (Sen) ™ s hrotign ) VR e
k=1 k=1

Thus we see that L3 f is smooth and compactly supported upon using that (i) the functions h” are

() Ugs
smooth and compactly supported uniformly in &, and that (ii) we have the pointwise inquality,

S Yl peo Z Hon k) 1 HLl th(’”Uo;nHQLw

oo
Zaﬂ'(k‘)Uo<1Uo< ) s w(’“)Ugn>whﬂ—(’€)U0,g
k=1

Z H]-Uo (SK,’U)il fHLP Hhﬂ(k)Uo;nHioo ~ Z Hf”LP ’ (k)U | ~ Hf”Lp .
k=1

Consequently, the Fourier transform QJ*@ f) of the smooth surface measure @, (¢¥»L3f) has decay

@ WEEN ©)] S Wllpg s 10 L+ 1N

by e.g. [Ste2, Theorem 1 page 348] or Theorem 29 below. Since this function is in L? (R") for all ¢ > 22,
it follows that

ITL3 0 S 1o

which proves the second line in (1.23), and completes the proof that (1.9) implies (1.8). O

2. SMOOTH ALPERT FRAMES IN LP SPACES

Recall the Alpert projections {AQ%H}QGD and corresponding wavelets {h“ W}QGD, wer, of order x in R"

that were constructed in B. Alpert [Alp| - see also [RaSaWi] for an extension to doubling measures, and for
the terminology we use here. In fact, {h“QW}aer is an orthonormal basis for the finite dimensional vector

subspace of L? that consists of linear combinations of the indicators of the children € (Q) of @ multiplied by
polynomials of degree at most x — 1, and such that the linear combinations have vanishing moments on the
cube @ up to order k — 1:

Ly, () =4 f= Z 100"k /f Yatdu(z) =0, for0<l<k—1landl1<i<ny,
Q'ee(Q)
where por.i, (x) = Zaezn Jal<k—1 @Q/;x® is a polynomial in R™ of degree [af = a1 + ... + a, at most £ — 1,
and 2 = 2§ 23?20 11. Let dg,x = dim L7, (1) be the dimension of the finite dimensional linear space

L%, (). Moreover, for each a € T, we may assume the wavelet h¢, . is a translation and dilation of the
unit wavelet h¢, ., where Qo = [0, 1)" is the unit cube in R™.

2.1. Alpert square functions. It is shown in [SaWi, Corollary 14] (even for doubling measures in place
of Lebesgue measure) that despite the failure of the x-Alpert expansion to be a martingale when £ >
2, Burkholder’s proof of the martingale transform theorem nevertheless carries over to prove, along with
Khintchine’s inequalities, that the LP norm of the Alpert square function Sf of f is comparable to the L?
norm of f, where

Sf(z) = S A f@]P] . zeRrn

QeD, acl',

Of course Sf also depends on the grid D and &, but we suppress this in the notation.
Theorem 13 (Sawyer and Wick [SaWi]). For x € N and 1 < p < 0o, we have
(2.1) 1SF Lo @ny < Comn 11l o gny -
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2.2. Smoothing the Alpert wavelets. Given a small positive constant 77 > 0, define a smooth approximate
identity by ¢, () =n~"¢ (%) where ¢ € C2° (Bgn (0,1)) has unit integral, [, ¢ () dx = 1, and vanishing
moments of positive order less than k, i.e.

1 if v =0
Ydr = 50 —
(2.2) - (z)a"dx =0, = { 0 if 0<y|<n

In fact we may take for ¢ (z) a product function ¢ (z) = [[;_, ¢ (x;) where ¢ € C2° ((—1,1)) satisfies

1 if v=0 }
Y .
(2.3) /Rgo(x)xdz—{o i 0<y<k for 1 <i<mn.
One way to construct a function ¢ satisfying (2.3) is to pick x € C° ((2,1)) with [ x (y)dy = 1, a large
N €N, and then for A = (A1,..., An) to define,

oy (x) = Z Amx (2™x) .

Then with the change of variable y = 2™x we have,

N N N
/@A (z) 2V dx = Z )\m/x(me) 2Vdy — Z A, 2~ O+ /X(y) yldy = C, Z A2~ MO,
m=1

m=1 m=1
1 if ¥=0

0 if 0<~y<s we need to solve the linear system,

In order to achieve [ ¢, (z)zVdx = {

N N
1= Z Am2 ™ and 0 = Z An2” ™D for 0 < v < g,
m=1

m=1
which in matrix form is

e; = M.A. where M, = [2—me]1§m§N .
1<t<k

We take N > x and observe that the square matrix M, = [2*”“] 1<m<x has nonzero determinant, in fact
<6<k
w2 (r—1) o

|det M| is bounded below by 2~z . Indeed, the square Vandermonde matrix

V(z) =V (21,22, ....,2y) =
T l‘% .Z‘Z
has determinant detV (z) = H (z; — ;). Thus with = (k) = (271,272,...,27%) € R*, we have
1<i<j<n
Vi(z(k)) = [27me]1§mgﬁ = M,, and so

1<¢<k
|det MH| = H |27] _ 272| 2 H 2~k — Q*KN(’{QZH .
1<i<j<w 1<i<j<n

Thus we can find coefficients A = (A1, ..., Ay ) such that ¢ = ¢, satisfies (2.3).

In the spirit of symbol smoothing for pseudodifferential operators, we define smooth Alpert ‘wavelets’ by

hgﬂe = DG * Pre(Q)»

and we claim that hg. . and h’éﬂg coincide away from the n-neighbourhood (often referred to as a ‘halo’)
(2.4) H, (Q) = {xz e R" : dist (z, Sg) < n},
of the skeleton Sg = UQ, cen(Q) 0Q'. Note that away from the skeleton, the Alpert wavelet h¢ . Testricts
to a polynomial of degree less than x on each dyadic child of Q. We now show the same for smooth Alpert
wavelets away from the halo of the skeleton.



14 E. T. SAWYER

Lemma 14. With notation as above and ¢ satisfying (2.2), we have
(2.5) Ow (@) =hg (x), TR \H,(Q).
Proof. If mqy (z) = 2% = 27" 25?...2%" is a multinomial, then
0 9) @)= Y (s [P0 )ay)a” = o = (o)
0<B<

which shows that (2.5) holds. O

We also observe that for 0 < |§| < &,

g @ads = [y b @z = [ [ 00y @) (@~ ) %

— w0 { [t o -nPabay = [0 )] [ @) (@40 acfay
[ by ) 01 dy =,

by translation invariance of Lebesgue measure.

2.3. The reproducing formula. For the purposes of this subsection we will change notation from that in
Theorem 7 in the introduction by defining

A}];/{f = Z <f7 (;;n> h?:Z = (Alﬂif) * ¢7}Z(I) :

acly,

Next, for any grid D, we wish to show that for n > 0 sufficiently small, the linear map SE,] defined by

(26) S;?,nf = Z <f7 (Il;n>h?;7;] = Z A?;fif ? f € Lp’

I€ED, a€l, IeD

is bounded and invertible on LP, and that we have the reproducing formula,

Fay= > (S5 fihf.) Bil@),  forall fe LI

IeD, ael,

with convergence in the L” norm. Since x > % is fixed throughout our arguments we will often write S,]D
instead of SHD,n in the sequel.

Proof of Theorem 7. Theorem 7 follows easily, together with what was proved just above, from Theorem 15
below if we define the pseudoprojection ATI];K in Theorem 7 as the pseudoprojection A?;n in Theorem 15. [

We include arbitrary grids D in Theorem 15 since this may be useful in other contexts where probability
of grids plays a role, originating with the work of Nazarov, Treil and Volberg, see e.g. [NTV4] and [Vol], and
references given there.

Theorem 15. Let n > 2 and k € N with k > 5. Then there is 1y > 0 depending on n and k such that

for all 0 < n < ngy, and for all grids D in R™, and all 1 < p < 00, there is a bounded invertible operator
SP =8P, on LP, and a positive constant C, .,y such that the collection of functions {h‘}g} is a
, ") 1eD, acl'y,

Cpn.n-frame for LP, by which we mean’,

(2.7) fz) = Z ﬁ?mf (),  forae. x€R"™, and for dall f € LP,
I€D, acT,
A -1 a a
where A?mf = Z <(S,?) f, I;H> hTm s
acly,

"See [AlLuSa] and [CaHaLa] for more detail on frames in LP spaces.
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A
)1 <am

Lp

and with convergence of the sum in the LP norm, and

~ 2 %
% Hf”LP S (Z ‘A?n-f ) (Z ‘A?va
L IeD Lo IeD

for all f € LP.

[Allzw s

Notation 16. We will often drop the index a parameterized by the finite set Ty, as it plays no essential role
in most of what follows, and it will be understood that when we write

Ag;,@f <fa hQ n> Q;k?
we actually mean the Alpert pseudoprojection,
onf = D (fo ) B
acl’y,

Now we turn to two propositions that we will use in the proof of Theorem 15.
Proposition 17. For x> 5 and n > 0 sufficiently small, we have
ISPfl o = fllpe » for fE€LPNL? and 1 <p < .

Proposition 18. For x> 5 and n > 0 sufficiently small, we have

H(ST?)*JCHLP%HJCHL,, , for fe L’ NL? and 1 < p < co.

To prove these propositions, we will need some estimates on the inner products <h;’ o> hQ;,ﬁ> where one
wavelet is smooth and the other is not. Fix a dyadic grid D. We say that dyadic cubes ;1 and @2 are
siblings if £(Q1) = £(Q2), Q1N Q2 =0 and Q1 N Q2 # B, and we say they are dyadic siblings if in addition
they have a common dyadic parent, i.e. 7p@Q1 = 7pQ2. Finally, we define Car (Q) to be the set of I € D
with ¢ (I) < £(Q) such that I and @ share a face. We refer to these cubes I as Carleson cubes of @, and
note they can be either outside @ or inside (). Finally, we may assume without loss of generality that n is a
negative integer power of 2.

Lemma 19. Suppose k € N with x > 5,0 <n = 27k <1, and I,Q € D, where D is a grid in R™. Then we

have
’<h7Q;H,hQ;,Q> ~ 1 and ’<hg;th’;m> <, for Q and Q' siblings,
(N2
(otan)| 5 0(5) . pricca@.
21

(Motan)| £ (52 prqecu mae@zam.

1 /¢ Ate
(Moo = 2 (58) 7 fre@<atm adenny 2o
<h}7m,hQ;,{> = 0, in all other cases.

Proof. Fix a grid D, and take 0 < n < 1. We have
<h%;thm> = (hqe hqu) + <h7é;,@ — hQ th> =1+ /H o (h’ém - hQ;n) () hqi (2) dz,
where

/ (hy = hin) (@) hgue () der| S ||y = P
Hn(Q)

el (@)1 £ —rm—emiel =
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Next we note that if I is a dyadic cube and @ € Car (I), then Q N'H,, (I) # 0 and <h?;m hQ;,i> # 0 where
n = 27% imply that Supp hg., = Q C H, (I). If @ C H,, (I), then we have

(Wotan) = [ 10bf, @ hou (@ de= [ (hrrbpn) (@) hou (o) do
Ho (1) QOH, (1)

- /QQHW(I) {/1 i (9) ey (2 —y) dy} hqi (z) dv = /Ihm (y) {/QQHU(I) Gnory (@ = Y) hgsw (2) dz} dy

- / e () / - )= (- ) VP by (c0 — )| e () b dy
In2ne(I1)Q QNH, (1) 7=0
< ”h””wH(vH né( ”)H ) 1Rl /B( z(z))/Q H, (1) dedy
cQ N NHy
< 1wl ( ! )Wu@'f 1B (cqunt (1)) 1@ N Hy (D] < — (”@)M
~ 71 oo\ (1) QM ~ ok ’
7] nt (1) Qe TN

since ||hrkll o S 1/%‘, 1hgill S ﬁ and ”VK¢nE(1) - <[V*l (7]%(])) :
If Q € Car (1) and £(Q) > nf(I), then we have the trivial estimate

‘<h7[7;th;ka> S 17@ (I)E(Q)"*l 1 | . (E(Q))Z‘l |

111Q (1)
On the other hand, if I € Car (@), we claim that

frano e (15) -

Indeed, this is clear if @ NI = () since then ‘<h} . hQ;,i>

<n|I| ﬁ I%QI’ while if @’ € €p (I) is the child

containing I, and if ¢ (x — ¢¢g/) is the polynomial whose restriction to Q' is (1¢g/hg;x) (), then <h717;m g0> =0

and so
(8,10 = (.0~} 1 =0 (22)".

We will also need the following consequence of the Marcinkiewicz interpolation theorem.

Lemma 20. For 1 <p < oo and k € N, we have

2\ 2
fvh il
2 <|<1%>1Hn(1) (x) < Con ™ I flls -

reo \ H|? .
1 .
won P2
where vy, = 3 if p=2
2
2G=p) if 1<p<?2
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Using 13, (1) () S M11a3, (1) (¢), the Fefferman-Stein vector valued maximal inequality [FeSt] yields,

2 2\ 2
Z (WlHn(I) ($)> S Z (MM INH, (1)( )>

I€D |1]? IeD |12
Lp Lp

Nl

1

1D <W1mm(1) <x>) = Ry f (@) -

IeD e
p

Now we note that

1

2 2 1
f»hl;n ’
IRofll < Z(Ulf S @mn?) | = 1R = 171
IeD ME IeD
L Ly
and
f?h’l;l{ fahIK fahI'
Rfle = Z(Wlmwn = [ 5 Whtselllebdly )1 o)
IeD 1,1'eD

_ Z |<f,h],§>||<f7h[ ,§>||ImH7/(I)mI/mHU(I/)|S Z |<.f7h}1l,f€>||<f7h1;f$>|n‘lm[/|
[ M Ik e ]? 1’|
JRhr s his)
_ /Z< e hx) o=y [ ¥ M @) e = S ) =01
IeD ME IeD TeD

Thus the (linearizable) sublinear operator R, maps L? — L? with bound By = 77%, and maps L? — L9 with
bound B, = Cj, , for 1 < ¢ < oo and g # 2.

In the case p > 2, let ¢ = 2p. Then by the scaled Marcinkiewicz theorem applied to R,, with exponents 2
and g = 2p, see e.g. [Tao2, Remark 29], we have

0 1
IRyl < Cl By *BS = Cl 2= N (C!,4p)" = Crpn™,

=2 1_1-6
with Cy,, = CJf , (C},5,) P77, since =0+ 2— implies 1 — 6 = Iﬁ
In the case 1 < p < 2, take q= H—p and apply the scaled Marcinkiewicz theorem to R, with exponents 2

and ¢ = Hp to obtain

1091 0 _p=1_
HRanLp C// Bl OBHP :C;L/)pWQ(l 0) (C:l,#) = Cy pn 7t ,

)
: _ / : 1 _ 1-6 [ : _n_ 2p—2
with Cy, , = C7 (C'ml;p) ; since & = <55 + e implies 1 — 0 = PGy O

2.3.1. Injectivity. We can now prove Proposition 17.

Proof of Proposition 17. We have

San = Z AQinSnf = Z (Snf, hqin) hauw = Z <Z (f,hrw) Imh >hQ K= Z (f hisw) <h?;th;H>hQ;nv

QeD QeD QeD \IeD Q,IeD
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and

HSZ])fHLP ~ (Z |<Snfa hQ;n> hQ;n|
QeD

%

QeD

%

;1.\
(Z [(f, hq:x)| @|1Q)

QeD

where by the square function estimate (2.1),

CollFIIZe =

PIAD

QeD

for some Cp, ¢, > 0.
Thus we have for each Q € D,

(Z ‘<fth;m>< thczn> 2

1P

+0

Lr

1
2
Q)| @162

Y (fohn) (R hg) =

I€D: I£Q

)

E. T. SAWYER

>

Nl

1
2

Lp

Lr

Nl

1€D: £(1)<4(Q)
IeCar(Q)

+

<

+0

>

QeD

Z (fhrin) <h?;m hQ;K> hq:x

1€D

QEeD |IeD: I1#£Q

2

> o) (b )| 1o

p

Lr

IeD: I£Q

1P
2

Z |AQ;Nf|2

QeD
Lr

1€D: £(I)>£(Q)
Qﬂﬁg(f)ﬂb

> (fhr) (hfs Q) -

I€D: £(1)>£(Q)>ne(I)
Q€ECar(I)

As a consequence of the estimates in Lemma 19, we have for each Q € D,

A

> ) (W hq)

I€D: 1£Q

Ui

>

IeD: ¢(I)<L(Q)

(B (f((g)) LY

IeD: £(Q)<ni(I)

IeCar(Q) QmHg(I);éV)
+ > (o) (B b))
I€D: £(1)>6(Q)=ne(I)
QeCar(I)
= AQ+BQ+C@Q).

Altogether we have

(2.8) Z 0l Q|

Q€eD I€D: I#£Q

QeD

We now claim that

29 > @

QEeD IeD: I1£Q

(g

v
[N

2

Lr

2

> o) (Mo haw)| 1a

W=

Z <fu hI;fi> <h717;th;N> 1q S Z |Q‘

QeD
Lr

(g e )é

Lp

Lr

> cp | f1I7

1
< b (1og2 ) T

MBS

[N

1
2)2

Z Z (f hiiw) <h7I];th;ﬂ> |hQ;N|2

Lp
2

Lp

(f,h1) (h: hq)

1
(Fohrad] (

Lr

1

Lp
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With this established, and since £ > 5, we obtain

[N

2

1 C
Z |Q| Z (f, hrw) <h717;th;f<> < Cnz7r (10g2 > £l < p 1f e
QeD 1€D: 1£Q
e

with n > 0 sufficiently small. This then gives
¢ c
Collflls > 182510 > e I = Z 17l = LAl

which completes the proof of Proposition 17 modulo (2.9).

We prove (2.9) by estimating each of the three terms on the right hand side of (2.8) separately, beginning
with the term involving A (Q).

Case A (Q): For each Q € D, wehavefor 0 <e <1l and 0 <y <n—e¢,

AQ=n ¥ <f,hm>|( é) 1YY (b2

IeD: ¢(1)<(Q) t=11eD: ¢(I)=2"t4(Q)

IeCar(Q) IeCar(Q)
S ny > kP2 =gy 2 > 2 )
t=1, | 1eD: ¢(I)=2""(Q) t=1 I€D: ¢(I)=2"1(Q)
IeCar(Q) IeCar(Q)
S #( ¢ 2 2-(n—e-7) - t 2
<7 ZQ (n—e=v) Z Z 27 [(f, hre)|” =1 PR S C—) Z Z 27 [(f, hre) |
t=1 t=1 1eD: ¢(I)=2"14(Q) t=11eD: ¢(I)=2"%4(Q)
IeCar(Q) I€Car(Q)
and so

s@=1 > wml ({) <0 |3 S e

I€D: £(I)<l(Q) t=11eD: ¢(1)=2"44(Q)
IeCar(Q) I€Car(Q)

if we take v = n — 2¢. It follows that

t(n—2¢ 2
> oA 1 D3R S SR TARISE
QeD Q€D t=11eD: ¢(I)=2"44(Q)
Ly IeCar(Q)
P
1
2
1
2 —t(n—
o | POLRZEID - S VR St
IeD t=1 QED: £(I)=2""4(Q)
IeCar(Q)
Lr
1 1
’ ‘ fa hIf-e 2tn+2¢et
<7 Z'fvhlﬁl Z|2t[| B BT <1 Z 22_ (s Y
I1eD p IeD Lp
1 1
’h n 22 2 Jh N :
ISE ( I8 Frge) I (M11)2 ) (Z'f u Mr11)2>
IeD I IeD Lo
I%i h :
3 IH
S ( 11) ~nlflles
IeD Lo
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2
2—2e

provided 1 < r = = ﬁ < p. Indeed,

o0

2—2¢
2272m+25t12t1 < (M11)2 T _ (MT11)2’
t=1

where the inequality follows from

[ee} [ee}

Z 272tn+25t12t1 (.Z‘) ~ Z 272tn+25t12t172t71[ (.73)
t=1 t=1
9]
ZQ 2tn 177 12t[ ot— 1[ §ZM1] )12t172t—1[($):M1] (17)2(17;),

t=1
and the equality follows by definition of M, and since 1; = (1;)", namely

2—2¢

)P = () = 0n1,)°.

Case B (Q): Set n =275, Note that the function squared in the second norm in (2.8) then satisfies

ETIC/A LN I
S P @e@=-Y gl 3 g (5E) | e

QEeD QeD IeD: £(Q)<nL(I)
QNHz (1H#0

L\ (L(@\HE
- =Y G > > Wl (52 (FR) 10w
QeD IeD: Z(Q)<n€(1)1 eD: UQ)<ne(I)
QﬂHl( )# Qﬂ'HE( );ﬁ@

~—

1 1 e 2K
- 22 Y el () Y Q" 10w

I,I'eéD and ICI’ QED: £(Q)<nL(I)
QﬁHg(1)¢@

1 1 K+% QNOO —t2K
RIS |<f,hm>||<f,hm>|(w) (Y Y 1g@et

3

Q

n I,I'eéD and ICI’ t=B QeD: 2Q)=2"tu(I)
Qniy (10
where for ¢t > 3 and x € Ha (I), we have
> 1o () <1,
QED: L(Q)=2""¢(I)
QQH%(I)¢W
so that
> @S Y Whnli () e S e, )
IQI ~ SRR e e (1) Mg

QeD I,I'ED and ICI' t=p

Now recalling 27 = %, we have for t > 3,

~ tn s
#{QED: dist (Q,01) > £(Q) =27 (I) and Q NHz (I);é(b} is { ”7(’)2 g 155/3
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Our blanket assumption that £ > 7 shows that all of the geometric series appearing below are convergent.
Then we have

1 2 1 |Cfs ) LIS i) <€(I)>"i o2
=B(@Q)1g(z) S = n m ; 27" 1y, (1) (2)
o2 T o0 S 2 it \am) HOF
L |(fs hr) | [(fs P | (ND)H 22k
<
S e (DEAE D) Tz
|(fs ) | (s P | <€(I))H
S i - <~ Ln, ) (@),
I,I’GDzar;d cr L) L(I)? e(I') g

which in turn equals,

(el [ o)) ( e )Kl .
I;D; \/mﬁ |7-|-(S)I| é(ﬂ'(s)I) HTI(I)( )

1y, 1) (%)

S Wbl [P o),
-y |I|I e

IeD s=1 |7r(S I|®

(Z? ) 3 U (Fhone)],

IeD |12

n(I) (.T) ’

which is at most

2

o 2 Frhy o P %
(Z 2“”“) J > (W) IICONDD (W) Ly, (nto1) (¥) = > (W) Ly, (1) ()

1€D ‘I‘E 1€D 1€D

By Lemma 20 we thus have

) N
(2.10) ) <[ (Mlma)( >> < Gy | £l
QeD |Q| IeD ME

Lp Lp
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Case C (Q): We have,

2

Yl @ = Y (i (Hehon)| L@

QeD IeD: €(I)26(Q)=nt(I)
QeCar(I)

1
= Z @ Z Z <f7 h1§ﬁ> <h7I];/{7hQ§H> <f7 hll§f€> <h7fl’;57hQ> 1Q (SL‘)
QeD 1€D: L) >6Q)>nl(1) 1€D: £(1")>£(Q)>ne(I")
@eCar(l) QeCar(l')
1
~ Z @ Z (f hise) <hTI] K hQ;m> (f, hriw) <hTI]';m hQ;F»> 1 (2)
QeD II'eD: ICI’ and £(1)>£(Q)>nt(1")
QGCar(I)ﬁCar([')
1 7 7
= 2 o Y. (L) () (] he) (B he) | 1g ().
QEeD I,I'eD: ICI’
QGCar(I)ﬂCar(I')

(n)ZeQ)=ne(I)
We first compute the diagonal sum restricted to I = I’. Set
Lpe (D) ={w el dist(z,H, (1) =2'nl(I)}, for0<t<pB,

where we recall that 7 = 277, and note that the diagonal portion of the sum above equals

2
2 ’ h?;n’hQﬂi
Sal X e (e |1e@ =ikt ¥ <|Q|>1Q @)
QeD IeD: QeCar(I) IeD QeD: QeCar(I)
(1) >£(Q)=ne(T) L(1)=(Q)=ne(I)
2 (TQ) 9 2 1
S Z|<f7h1;n>\ Z Q(x)=mn Z\(f’hI;nH Z WIQ (2)
1€D QeD: QeCar()) I1eD QeD: QeCar(I) ( ) (Q)
£(I)24(Q)=ne(I) L(I)24(Q)=nl(I)
2
1 ‘ f hI H 1
R 2 | fa hI A — d - ].[ (ZC) s
; 0" 2 e (1) + dist (z, H, (1)) ,;) 1+%§}‘;<”>

which can be written as

2
| fa hI H 1 | fa hI n 92t
Z Z Ir,, (z) | dist(e.1,(1) Z ZQ Ir, .o (@)
I€D t=0 + 1€D

Thus

2 ,h )
> W hrll Ir,.n) (2)

1eD

B
Z |Q\ Z 1(f, hro)|? ’< I,thn> 10 (z) 522_%

QeD I€D: QeCar(l) t=
(I)>6(Q)>nL(I) Lo

Lr
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From the estimate for term B in (2.10), with 7 replaced by 2'n, we obtain

7h x)
PR %) I 1Fw(1) (z)

1eD

S; Cp,n (2t77) 2D ||f||Lp )

Lr

and so altogether, the diagonal portion of HZQGD ﬁC (Q)2 1o (m)” is at most
Lr

B 1
S Con27 (2'0) 7 | £l

r =0

7h I{
Z | f I 1Fn,t(1) (x)

I1eD

ZQ 2t

t=0

B8
4(p—
= 77D § 2 ) || £, = T S G2 T S
t=0

t=0
1 . 5
LB s 20\ fll, i p>3
—1 —t -9 . [3
= ne=n ZCPJIQ =2 Hf”LP ~Cpn§ 7 (10g2 %) Hf”Lp if pP=73
= 7 £l oo if 1<p<}

Now we use the estimate )<h}7 o hQ;,{>

line of Lemma 19, to obtain

QEeD I€D: £(I)>0(Q)>nk(I)
QeCar(I)

S Y ARl Rl > (W hun )| | (s i)

I,I'eD: ICT QED: QeCar(I)NCar(I')

(D20(Q)=ne(I")
(Q =1 sy Q E
S Y Wkl Y (5
I,I'eD: ICT QED: QeCar(I)NCar (1)

(I 20@)=zne(1")
_ ey Bhllp kel g LD LI,

vt VIV Q) L(Q)

QECar(I)ﬂCar([’)
(I 20@)zne(1")

23

< 2(Q) z-1 £ ¢ >/ :
Nn(e”) or Q € Car (I) and £(Q) > nf (I), see the third

At this point we observe that the conditions imposed on the cubes I and I’ in the sum above are that
there exists a cube @ such that @ C I C I', Q € Car (I) N Car (I'), and £(I) > £(Q) > nf(I'). It follows

from these conditions that

IeCar(I') and £(I) <0 (I') < lE(I):25£(I).

3

Thus we can now pigeonhole the ratio of the lengths of I and I’ by

=2° for0<s<p.
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With s fixed we have I’ = 79T and

(ot [ (o))

7y > T 1q (x)
IeD \/m\/ |7T(S)I| QGCar(I)ﬂCar(ﬂ'(s)I) é( ) E(Q)
«D)>0Q)>nt(x)1)
|<f7hl;fi>|‘<f,h(ﬂ—(s)])-,g> E(I) 2
> ’ > 2° () 1q ()
IeD \/mv |7T(S)I| QECar(I)ﬁCar(ﬂ'(s)I) ¢ (Q)
(I)>0(Q)>2"nL(I)
[ horad [ £ B 1)0n) () ’
~ s,.2 ’
o IGZD VT[] ] <2‘W (1) + dist (z, Haey (D)) b (@)
|<f7h1;l'€>| ‘<f’h(rr(5)[)'l-€> i
_ 28772 ’ 2 - 1 (1‘)
; NN 25 + W !
2
_ §:<ﬂmmHKﬁhﬁm0m> ! 1/ (x)

VI

IeD

,/’71'(3)[’ 1+

dist(."c,?'(gs77 (I))
25nl(I)

where our sum is exactly like the diagonal portion with two exceptions, namely that I has been replaced by
7T in the second factor, and 1 has been replaced by 2°n in the third factor. Thus we continue with,

2
Z |(f, hiw)l <f’h(”(“”);“> 1 1; (z)
R dist(z,Has, (1)
IeD VI |m()1] 1+ W
2
ﬁf
_ oy k)l (P hgeonye) Do Ara,.n (@) 1
T 5 2%m,t dist(x,Has, (1)
IeD vl }77( )I’ = %
h fs
|(f, hrx)l <f’ (”(S>I)?“> Z —2t
~ > 27" 1p,. (0 (2),
IeD \/|T \ﬂ'(s)l| t=0 ’
since Taepy ¢ (I) = {z € I : dist (z, Hasyy (1)) =~ 212500 (1)} and dist (@, Hasy (1)) < £(1).
Now we continue to proceed as in the diagonal case to obtain,
2
5 1l [{ o) ! 1
T dist(z,Has, (1))
IeD \/ﬁ \/71'(TI 1+ TZ?I) e
B—s fih
_ his)| ‘< P m1); >
< ZQ”Z‘JC’ = Ir,., (0
t=0 1€D \/|7 \/ S)I - Lp
B Iih i
—s ~ ,h H ’< 9 xS ;/1>
5 Z 2 2 Z | f |;| 1F257],t(1) Z |( (s)[}) Tasy,(I)
t=0 IeD IeD &
Lr
2
B—s
- [(fs )| ’< (21); >‘
5 ZZ 2 52 ‘I‘ 11"29,, «(I) + 5 Z 7'(‘(5 I| 1F25W=t(‘r) ’
t=0 IeD
Lr
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for every choice of 6 € (0,1). Thus it remains to estimate each of the terms

2

B—s B—s f h
|| 1) f,m 122 = [ o)
02 T T || and 5227 ) P o))
t=0 I€D e =0 1€D
Lr
and then minimize the sum over 0 < § < 1. But from (2.10), we have
B_S —2t | f7 hI Vv S\ 3Ty
D2 S | S G 0T S
t=0 1eD Lp
o :
~ 2 ’ (ﬂ“”)m> o I hrs)|” i
2272 x| Lrgen o) SEDEE DY T e S Conn™ 0 | flls
t=0 I€D t=0 I'eD p
Lp
since
Lyt (I Taene (I) = {z €l :dist(z, Hosy (1)) = 22°00 (1)}

c {wel:dist(x,H,(I') ~ 2l (')} =T, (I').

Thus with § = 27D , we obtain

2

5 1l [{ o) ! "
/1T dist(z,Has, (1))
ieo VI ylor] e =)

s 1 1 1
S 0Cn 202 fll e + 5 Cpnn®@ 0 £l o

_s 1 1 s __ B
= |:622(p1) + (5:| Op,nnﬂpil) ||f||LZJ = 20[),”24(1)71)2 2(1)571) ||f||Lp

__B 1
< 20,02 T || f| 1 = 2Cp w0 || fll e

since 0 < s < . Finally we sum in s from 0 to 5 = log, % to conclude that,

1 1
Z ‘Q| 5 774(2071) 10g2 = ||f||LP .
QeD "
Lp
This finishes the proof of (2.9) and hence the proof of Proposition 17. O

2.3.2. Surjectivity. The proof of Proposition 18 is very similar to that of the previous proposition in light of
< MYy (A?;K f ), together with the Fefferman-Stein vector-valued
maximal inequalities [FeSt] and the square function equivalence (2.1), shows that

(Z N ) (Z IAI;JQ)
1€D

IeD
We also have from the square function equivalence that

the following equivalences. Using ‘A?;H f

ZAIHf

1e€D

= £l -

Lr Lr

(2.11)
(Zlen )| =gl )| =[5 rmm] =)
IeD IeD IeD e IeD o

Lr Lr
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Furthermore, from the definition (SZ]))tr f=>ep <f, h}’m> hr.., we then obtain

1 1
3 3
r r 2 * 2
CRE I (CON T | DI NN = 1 22 [((SP)" 1) B
QeD Q€ED
Lp Lp
1 1
1 \° 1 2\’
_ - n - n
- QXE:D |Q| <I€ZD <fa hI;n> hI§R7hQ§H> QZE:D |Q| ’<f’th>
Lp Lp
Proof of Proposition 18. From (2.12) we have,
. )\ 2 . 2\ 2
tr
oo o, = (3 mlnf) | (5w sl ) |
QED QeD IeD
Lp Lp
which we now compare to
: 1 N
HSUDJCHLP ~ Z |<S'r]fa h’Q;K> hQ;r@|2 = Z @ Z <f7 hI;H,> <h?;R5hQ;I’€> )
QeED » QeD IeD e

that was shown to be comparable to || f||,, in Proposition 17 above. The only difference between the two
right hand sides is that the convolution appears with A/, in the first norm, and with hj, in the second
norm. We now use the estimates in Lemma 19 just as in the proof of Proposition 17 above. Here is a sketch
of the details that is virtually verbatim that of those in the proof of Proposition 17. Recall that H,, (I) is
defined in (2.4).

For convenience we first rewrite the estimates in Lemma 19 so as to apply directly to the inner product

<h1;,.i, th;n> instead of <h}’m, hQ;H>. This is accomplished by simply interchanging @ and I throughout:

<n, for Q and Q' siblings,

(2.13) ’<hgm,h%> ~ 1and ’<hgm,h@m>
(W hrn)| % n(i((%)) for Q € Car (1),
o] % 1(20)

{

7 ,  forIeCar(Q) and ¢(I) > nl(Q),
k+3
W] 5 L (“”) L for £(1) < n0(Q) and INHy (I) #0,

n® \(Q)
<h22;~’ hI;H> = 0, in all other cases.
Now we have by the square function estimate (2.1),
2\ 2
tr 4
(SUD) f‘ Lpr ~ Z Z <f’ h1§'€> <h1;ﬁa hg;,g> hQ;m
QeD |IeD
Lr
) 2 3
2 ) )
~ Z ‘<f7 h’QW) <hQ§'f’h22;n> |h’QW +O Z Z <f7 h’I§H> <h1§ﬁ7hg;n> |hQ‘
QeD QED |IeD: 1#£Q
Lr I
1P 2 3
1 1 .
~ Z ‘<fa hQ§N>|2@1Q +0 Z @ Z <fahl;n> <hI;mhc/2;,Q> %) »
QeD ; QeD IeD: T#£Q
P e
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where for some Cp,c, > 0,
P

1
Gk, =S |<f,th>|2@1Q = D 12quf? > ¢ | £l -
QeED » QeD e

p

Nl
W=

Thus we have for each Q) € D,
S hnd (bl y = S Lk (hr bl )+ Y (e (R B )

1€D: 1£Q 1€D: 0(1)<(Q) 1€D: £(1)>4(Q)
IeCar(Q) QﬂHg(I)?ﬁ(D

+ Z (fyhrx) <h1%'~”~7h23;n> )

1€D: (1) >6(Q)>ni(1)
QeCar(I)

As a consequence of the estimates in (2.13), we have for each Q € D,

1 /6(Q
S ()| 5| Gk (et )|+l (2
1€D: I#Q IeD: £(I)<4(Q) 1€D: £(Q)<ni(I) Ui
Ie€Car(Q) QmHg(I);é@

m Y e (59)

IED: £(I)>6(Q)>nL(I)

QeCar(I)
= AQ+BQ+CQ).
Altogether we have
2 3 1
1
(2.14) > Q| > o) (hre b, )| Ta SIPIEICIEE
QeD IeD: T#Q QeD
Lp Le
1 1
2 1 2
| 2 e @@ e
QeD QEeD
Lr Lp
We now claim that
2 3
1
(215) S| Xt ()| 10| || St (lom L) 161
QeD IeD: T#Q
Ly

With this established, and taking x > &, we obtain just as in the proof of Proposition 17,
1
2\ 2

Z |Q| Z <f7 hI;N> <h1§”’h%;ﬁ> < 077%” (10g2 > ”fHLp & ”fHLp )

QeD I1€D: I£Q

Ly
with 1 > 0 sufficiently small. This then gives

C C
Collfllo = ||(SD) 1], = en Ifllw = 2o = 2SN

which completes the proof of Proposition 18 modulo (2.15).

We prove (2.15) by estimating each of the three terms on the right hand side of (2.14) separately. These
three terms are handled exactly as in Proposition 17 except that the arguments for handling terms A and
C are switched, with term B handled the same as before. We leave the routine verifications to the reader,
and this finishes our proof of Proposition 18. |
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2.3.3. Representation. Combining the two propositions above immediately gives the proof of Theorem 15,
as we now show.

Proof of Theorem 15. Fix a grid D in R™. Combining the two propositions shows that SUD is a bounded
invertible linear map on LP. Indeed, Proposition 17 shows that S},) is one-to-one and Proposition 18 shows

that SZ]) is onto. The boundedness of SZ]) is immediate from Proposition 17 and the boundedness of (577]3)71

now follows from the Open Mapping Theorem.
Thus dropping the superscript D we have

F=50(8) 7" =Y (807" fohr ) B
IeD
If we set .
A f= <5771f, Riy) hi. =4O (STI_lf) — <S77_1f’ Rry) (q&n@(,) * hm) ,

then we have

[ = ZA[JC Z 1f,h1,{ h}’,{, for f € L?,
IeD IeD
1 3
_ 2 _
( ( If‘ ) ~ <Z (S f )| |I|11> 85 Loy = 1 Loy
rep 17 (o) lep 7 Lo (o)
1 1
2 1 3
n p12 2
(Z ST ) ~ (Z [(F, e mlf) ~ 1 fll oo
fep Lo (o) 1ep 7 Lo(o)
which shows in particular that {A?H} is a frame for LP. O
") IeD

Notation 21. Since the frame {ﬁ?”}l n will be used extensively in what follows, we drop the tilde and
’ €

write A, instead of AT i.e. we redefine A, f to be

ATF= (S b ) Bl

1D

I;ik>

as was done in the Introduction. Thus we have inserted the bounded invertible operator Sn’1 into the inner
product above.

2.3.4. The smoothed pseudoprojections. The smoothed operators A7
nor orthogonal, but come close as we now show. Recall that

A?;mf = <( ) fv h[ n> Ik where h?;,{ = ¢77 * h];,i .

Lemma 22. With notation as above and ¢ = ¢ * ¢, we have

(82.)" 0= (o) (Sen) ™) e

(80,)" = st ont [(80,)"] = (0.)" and (88, (88,) " = .50 =41, 51
where AI,@ <f,h;’n> hil.. , and

where aj., = <(S n) hln,h1K> ~1andbj, = <(Sn,n)*2 h[;mhl;n> ~1

In particular we have

I, are neither self-adjoint, projections

and

1
2 2

n
e~ || D Wl[

i M

Lr
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Proof. The adjoint property follows from
(81.8.9) = ((Sen ™ Lhra) 09) = (Wh0) [ (5™ £ @) hrie (o) o
= (W) [ 1@ (80)) b @)

= [1@{(5 ™) hr @) (i) s = (1.(8,) "0

The pseudoprojection property follows from
(a0,) £ =2, (87,8) = (Sun) ™ (87,F) hre ) B
= (Sun) {{ )™ ot ) W} ) B = (Se) ™ b ) (Sn) ™ B s bt ) B
= (S e ((Se) ™ Foe) Bl = (S ™ W) D f = al A, f
However, (Sx,) " is close to the identity map by (1.14), so that using ¢, = ¢, * ¢, , we obtain
@l = (Sen) W) = (W hre) +0 (1) = (Sguy * hriss hr ) + 0 (1)

2
2
(Snpttr) * Prcs Sy * e ) +0 (1) = 0o | +0 () & Il +0 (1) = 1.

L

We also compute

(A??“) (A?myrf - <(S“’")_l (A?;K)tr £ hI;“> hl.w
(S ™ {(F M) ()™ Pt o or ) i = (L) ((Srn) ™ ot o) P
(i)™ htins ) (F W) W = ((Swin) ™ Bries e ) B f.

Finally,

F=3 (21 1= ) [0 7] hre =[50 7]S () b

IeD IeD IeD
shows that

11z = H (527 S m )

1eD

Z ‘<f’h?’7?*ﬂ> 21

1]

Z <f7 h?;,@> Rrk

1eD

~
~

I

Lr Lr 1eD

Lp

3. THE EXTENSION OPERATOR AND OSCILLATORY INNER PRODUCTS

Given f € L? (0,,—1), we define the extension operator E, localized to a cutoff function x (z) by

BJ©=F(foa)© = [ 1G)e (@) do, (2).

Snfl
If we use a one-to-one onto coordinate patch ® : U — P such that Supp x C P and U is a cube centered at
the origin in R”~! with dyadic side length, then we can write

BSO = [T0e S @dna ) = [ 1@@)e O @ @) qorge s

/ h(z) e @ E¢ (2) da
U

where
X (@ ()

hiw) = f (@ (Bx)) and ((2) = G rea TN
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Since the map ® : U — P is a diffeomorphism, we have

Hh”Lp(U) ~ ||f||Lp(IP’) )

and thus the extension operator E, : L” (0,,—1) — LP (R™) is bounded if and only if the linear map T :
L? (U) — L? (R™) is bounded, where T is defined by

17 = [ gy s (097 (2 e = / f (@) e e, for fe P (Bnl (o;))

anl(07%)
where Kg ¢ (2,8) = e " ®@)€,

Now recall the (n — 1)-dimensional Alpert wavelets {h?,;l} ;" R"~! where G is a translation of the
" Jre

standard dyadic grid on R”~! so that S € G and the origin is a vertex of ﬂ(;) S (see also Notation 16), and
recall the smooth analogues h?,;l’" of these wavelets as constructed in Theorem 7 above. Then expand f by
the smooth Alpert reproducing formula f = S,{’,,S,;}]f =2 Ieg <S,;717f, h?;;1> h?;l’". In addition recall the
n-dimensional Alpert wavelets {h%j, } _, on R", where D is the standard grid on R", together with their
smooth analogues h')). It will be important, at least in a technical sense when estimating part of the above

form in Section 7, to use the standard grid D on R™ which enjoys the property that the distance from the
origin to a cube J € D is at least the side length of J, if the origin is not a vertex of J.

To estimate the left hand side HT ZIGQ[U] A?meL ) of the truncated extension inequality (1.10) when

p = q, we will use in particular the vanishing moments up to order x — 1 of the wavelets h?;l’" and h';7

/ h?,;l’” (x)z%dx = 0, for 0 <o <k,
Rn—1 ’

[ ma©ed = o toro<lal<n,

along with estimates for oscillatory integrals in which the amplitudes involve smooth Alpert wavelets.
We will now estimate the oscillatory inner product

(3.1) (Thy 0 myn) = / ( /R et (x)dz) Wy (€) de,

for (I,J) € G[U] x D and plug the resulting estimates into the decomposition of the pairs (I, .J) of dyadic
cubes in P given in (1.22) of the introduction, namely

oo
P=PouU |JPn URUX.
m=0
Thus Py consists of pairs that are aligned radially away from the origin, P,, consists of pairs that are radially
staggered at angle roughly 27, R consists of pairs where I is ‘close’ to the larger J, and X consists of pairs
in which the spherical projection of J is disjoint from ® (2U).

Regarding Py, our intuition tells us that when the approximate wavelength % of the exponential e =€
does not exceed the depth ; 1)2 of the spherical ‘cap’ ® (I), and the side length ¢ (.J) of the cube J supporting
hf};z is approximately the distance of the sphere from the origin, namely 1, then we should not expect to
derive any cancellation from the presence of the exponential e ~*®(*)¢. Thus the only estimate on the inner
product in this case should be the trivial one, in which the oscillatory factor e~*®(*)€ is discarded,
(3.2) (g | < [[wet]

iR

n,n
Jik

<]

Lt A

While this crude estimate will ultimately prove adequate in the case when ¢ (J) =~ 1, ( 5 S m a6l EI <

W 1)2 and I and J are suitably aligned in the same direction, we must obtain improvements with geometric

decay in parameters |k| and d > 0 when

A 2d—1 ) 2d+1
£(J) =2" and — < dist (0,J) <
t(I)




PROBABILISTIC FOURIER EXTENSION 31

Moreover, when I and J are not suitably aligned, and there is insufficient oscillation within the inner product,
we will need to invoke interpolation arguments with L? and average L* estimates when acting on certain
Alpert pseudoprojections.

When k£ > 0, we will gain geometically if we integrate by parts radially in £ using the smoothness of
the wavelets h’}Z, and when k < 0, we will gain geometrically in |k| using the large number of vanishing
moments of hf}: When d > 0, we will use the classical asymptotic formula for the smooth surface carried

measure 7 """ with sharp bounds on the derivatives of h?;;l’" to derive gain. Regarding P,,, we will use in
addition a jcangen‘uial integration by parts decay principle since the critical point of the phase no longer lies
in the support of the amplitude (hence stationary phase is not needed here). This suggests that we further
decompose the index set Py as

(3.3) Py = U U Pg’d, where
keZ d=1
2d—1 2d+1
Pyt = {U, ) eP:JCK(), () =2% and —— < dist(0,J) = —— o,
ey (1)

for k,d € Z, and the index set P, of pairs as

(3.4) Pm = U U Prd where
keZ dez.
phd = {(1, J) € P s 2" C U, £(J) = 2%, and 20 < ¢(1)% dist (0, J) < 2d+1} :
for k,d € Z and m € N. For m € N and d < 0, a different pigeonholing that respects resonance is required,
which we defer until needed in Section 8. Similarly, we defer further pigeonholing of R and X until needed.

In all of these index sets, the cubes I are restricted to G [U].

Next we introduce a standard change of variable that simplifies calculations, and then derive the well-

known asymptotic formula we will use with estimates on the remainder term®.

3.1. A change of variables. Write z = (2, z,,) for z € R™, and set

(3.5) ¢ (x,y) =P (z) - P(y), where ®(z)= (x, V31— |x|2> and z € R"71,

and define the variables (y, A) by

(36)  y=o (é) - % amd A=), e (€.6,)=E=AB(y) = (Ay,A\/ 1- y|2) ,

since then

We claim that

8These estimates are undoubtedly in the literature, but since the author was unable to find the precise form used here, we
include the classical arguments below.
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Indeed, we have (y,\) = (%, |£|) and £ = A <y, \/1-— |y|2>, and so
0§ o & 0 &
o€, €] €, _q I€] 0¢,, 1€
a(ylvvynfla)‘) _
d(&q,... | 06 9 &n1 9 Ena
) 26, "1 R
3751 ‘€| ¢, _1 ‘€| o€, |§‘
1 i _flgn 1 Lfn 2 2
HRGEE B B I€]" — & &6 —6E,
B : : : _ 1 : : :
§1E,L;1 1 i? 7571713571 |£|d £6, |§|2 _ 53171 —£, &,
H [€] €] H 2 2 2
& €n1 En &1 1€l En_1 €] £, 1€l
€] €] €]
where
¢* - & —&6ur G
| o z
_§1£n§1 |£‘ - £n§1 _gn—lgn
€ - & ~6n 6k
= ¢/ det . : = e &, 1670 = €, 1,
751571—1 |§| - €n—1 7571—157},
51 gnfl n
by an induction on n € N.
Thus we have
€* — & ~6& 6,
s Yn—1, 1 : : :
det a(yh Y 1 A) — — det : ) N , :
8(517"'7577,717571) |£‘ _glgngl ‘€| _gngl _gnflgn
&1 1€l &1 1€ 13
1 2n 5
= —=-6, 7 = =%,
I3 €]
as claimed. Hence
4ot 2 (b)) _ 1" _ A" A
O(Y1y oy Yn_1, A n ’
N A

and the change of variable £ — (y, A) gives,

(ritogy= [ f P E R (1) B (€) dd
: ’ nJB,_1(0,}) ’ ’

/R/Bnl(o,;) /Bnl(o
/R/Bn_l(o,;) /Bn_l(o

’2

1
’2

:)

)

/ / ( ) ei@(z)-)\(yy\/ 1*'9‘2) h?_;lﬂ] (.'13) hT]L,Z ()\ (y’ 1— |y|2)> det
nJB, 1(0,1 ’ ’

eAP@ LW LT () B (Ay,A 1- |y|2)

ei/\¢(m7y)@? (z) 17)3 (y, A) dedydX,

A
A1— 1y

8 (517 "‘7£n717§n)

3(y17 ey Yn—1, >‘)

n

dxdydA

dxdydA
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where we are now using the convenient notation,

el (x) = h},""(x) and ¥7 (&) = B}1(E),
~ n—1
DN = m (Aym/l - |y2) A|
1—1y

Note that if £ € J, then (y, A) € Tgand X Traad.

3.2. Bounds for oscillatory integrals. Here we review the well known asymptotics for oscillatory inte-
grals, see e.g. [Ste2, Chapter VIII], paying close attention to the constants involved. We emphasize that the
results in this subsection are well known, but as we could not find in the literature the exact form of the
estimate for the remainder term that we use here, we reproduce many familiar arguments below.

We consider the oscillatory function Z,, ¢ : R? x (0, 00) — C given by

Ia;,dﬁ (yv )‘) = / ei)\qb(w,y)aA (.7}, y) di[,',

n

defined for A > 0 and y € U where U is an open subset of R?, and we call ¢ (x,y) the phase and ay (z,y)
the amplitude of Z,, 4. We will follow a treatment of asymptotics for such oscillatory integrals given in a
Rice University blog [blogs.rice], but we will obtain a sharp estimate for amplitudes of the type that arise in
the smooth Alpert expansions.

We use three familiar preparatory lemmas. The first of these is the Morse Lemma, which will be applied to
the phase function ¢ (z,y), in order to transform ¢ into a nonsingular quadratic form in x at a nondegenerate
critical point in x. The second lemma gives high order decay bounds in the special case when there are no
critical points in z of the phase function that lie in the support of the amplitude, and the third calculates
the oscillatory integral for a quadratic form.

Lemma 23 (Morse Lemma). Suppose yo € U C R? and x¢ is a nondegenerate stationary point for ¢ (-z, o).
Then there exists a neighbourhood V-C U of yo, a neighbourhood W of xy, a smooth function

X:V-W,
and a smooth function
U:V->WxV >R
such that

(1) For everyy € V, X (y) is the unique stationary point, which is also nondegenerate, for ¢ (-z,y0) in
w.
(2) For everyy € V, the map W — R" defined by © — VU (x,y) is a diffeomorphism onto its image and

(38) 6(2,0) = 6 (X (1) 1) + 50 (2,0)" [20(X (v) )] ¥ (29).
Furthermore,
(3.9) V(X (y),y) =0 and 0.V (X (y),y) =1d, .

(3) Finally, we may take W = B (zq, ay) for some small positive constant
Cn
mMaX|q|<3 SUP(z y)e(Supp a) xU |82¢ (‘Ta y)' ,

where v > 0 satisfies inf, [02¢ (X (y),y)] = v1d,.

a =

Proof. For any y, the stationary points are the solutions of the equation 0 = 9,¢ (z,y), and by the nondegen-
eracy of the critical point, and the Implicit Function Theorem, this equation uniquely defines = as a function
of y in some neighbourhood N of (zg, o). Since in our application, ¢ (x,y) is homogeneous of degree zero
in y, we may assume this here as well. Then [@%qb (X () ,y)] = ~v1Id,,_1 for some v > 0 depending only

on ¢, and so we may take N' = B ((xo,y0),a’y) where a’ =

7 for some small positive
mMaxX|q|<3 SUP(¢,y) 05 ¢(z,y)] p

constant ¢}, depending only on the dimension n.
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Now we take the Taylor expansion of ¢ (z,y) in « about X (y) to obtain, upon noting that the first
derivatives in the Taylor expansion vanish at the critical point X (y),

6(e,5) = 0 (X (1),0) + 5 (5= X ()" Ble,9) (&~ X ().,
where B (z,y) E/o (1—5)02¢ (sz+ (1 —8) X (y),y)ds.

We now construct a matrix-valued function R (x,y) such that

U (z,y) = R(z,y) (z — X (y))
has the properties listed in (2) above. Indeed, this ¥ will satisfy (3.8) provided

(3.10) R(z,y)" 02¢(X (y),y) R(z,y) — B(z,y) =0, for (z,y) € N.

We interpret the left hand side of (3.10) as a mapping from M,, (R), x R? x V, to S,, (R), where M,, (R) is
the set of n x n matrices and S,, (R) is the subset of symmetric matrices. Taking the differential of the left
hand side of (3.10) with respect to the variable R and evaluated at the identity matrix Id,,, we obtain that
the derivative map,

dR — (dR)" 02¢ (X (y),y) + 026 (X (y) ,y) (dR),

is surjective, since whenever C € S, (R) is symmetric,

(5 [BoCx )] €) 226 (X () + 026X (). 586 (X ()] )

1 1
=-C+-C=C.

2 + 2
Thus by the Implicit Function Theorem again, there exists a smooth M,, (R)-valued function R (x,y) defined
on some neighbourhood Ny C N of (xg, yo) that satisfies (3.10) everywhere that it is defined. Note that we

may take Ny = B ((xo, yo) , a”’7) where where o’ = ma S Supc(” NEEEEm)
a|s T,y x il

neighbourhood Ny to A7, completes the proof that there is a neighbourhood W of xy such that z — ¥ (z,y)

is a diffeomorphism from W onto its image, and that (3.8) holds, and that ¥ (X (y),y) = 0. Note that we

may take W = B (xg,a7y) where a = The remaining assertion 9,V (X =1d,
y , @Y g Y)Yy

. Possibly shrinking even more the

Cn
Max| o| <3 SUP(4 4|08 ¢ (2,y)]”
is straightforward since,

Oz lo=x(y) Y (X (¥),9) = [0 R (2, 9) (z = X (y)) + B (2,9)] la=x ()= R (X (y),y) = 1dn ,
because we evaluated the differential in R of the left hand side of (3.10) at the identity matrix Id,,. O

Recall that
Lo N = [ eNEay @) o

where ¢ € C™ (R} x Uy) and ay € C> (R? x U,). We will need the following estimate in the absence of
critical points for x — ¢ (x,y).

Lemma 24. Suppose that the R™-valued function O,¢ (x,y) is nonvanishing on (Suppa) x U. Then for
every N € N and compact K € U we have
1

o > sup |0%axll gy, for (y,A) € (Suppa) x U.

sup |Ia,¢ (y7 )‘)l < CN,K
ver <N VER

Proof. For any M € N we have

= [ Qo) 0

7
(Ao (2 )?)

ax,

ax (xay) d:L‘,
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and integrating by parts gives

N
1 020 (,y)
sup [Zay 6 (¥, A)| < sup — oy ————"5 ) ax(z,y)|dv
yeKl > vek AN Jmn 1026 (,)]°
1
< Ovise X s [ 10 ()l ds
AT |aj<n vEK R
1 (63
= C'N,KTV E sup ”axa)\”Ll(R")XL‘X’(]R")'
A la|<N YEE

The final preparatory lemma is the calculation of an oscillatory integral for a quadratic form.

Definition 25. For a tempered distribution u € S (R™), we have

() = F (u) () = / ey (2)d ().

n

Lemma 26. Let A € M,, (R™) be symmetric and nondegenerate with signature sgn (A). Then the tempered

. . . it . .
distribution e® A% has Fourier transform given by,

_igtrA—lg
(3.11) F (2747 () = e s

V/det (A)

2. .
—tlzI” is given by

Proof. The Fourier transform of a Gaussian function e

112

F (e*tlw\2> (€)=t %
Now note that both sides of the above identity extend to analytic functions of ¢ in the right half plane

{t e C:Ret >0}. A standard limiting argument and orthogonal change of variables gives the formula
(3.11). O

, for all ¢ > 0.

3.3. The main oscillatory integral bound. Here is the main oscillatory integral bound.

Remark 27. In the application of stationary phase to bound the below form in Section 6, we won’t actually
use the oscillatory term X WY) in the asymptotic formula below, and instead we only need the estimates
of the modulus of T, ¢ (y,A) that follow from the asymptotic formula using |ei’\¢(x(y)’y)| = 1. The reason
for this is that when dealing with the below subform Bﬁﬁow (f,9) with k,d > 0 large, we can first apply radial
integration by parts in the inner product, and second apply stationary phase to the resulting inner product
with a new amplitude. This way the geometric gain in k has been achieved without using the oscillatory term
eMX W) - If we were to instead apply stationary phase first, then we would need e X W) for integration
by parts afterward.

Remark 28. We will only use the case M = 0 of Theorem 29 in the proof of the probabilistic extension
conjecture in Theorem &, which corresponds to the classical asymptotic formula with just the principal term
and remainder, but with a sharp estimate here on the remainder term when the amplitude is a smooth Alpert
wavelet.

We now give a more general treatment of stationary phase than we need, which might be of use elsewhere.

Theorem 29. Suppose that ay (z,y) € C (RY x RZ), Yo € U C R%, and that ¢ (-5, y0) has evactly one
nondegenerate stationary point on the support of a at xo. Take V., W, X and ¥ as in the Morse Lemma.
Then for every M € N, there is a positive constant Cy; depending on M and ¢ such that,

M
J4 M
Loy, (yv )‘) = Par,e (v, )‘) + Zs’pgiq& (v, )‘) + mgx,;;l) (¥, )
{=1
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where
() or\ 3 oilsen[026(X (1),1)] F+HA6(X (9).)] X))
%’d)y’A:() ax (X (y),y).
) A 26 (X (1) v)
i [or\ el B FHA(X ()]
PO, (X)) = ()
2n)" o det B (y)
! -1 1 (z,y)
p——————— | B X .
x{{a det(%\l/(w,y)] (%) det 0,V (z,y) } det[@x\y(x,y”‘ X(y)
and
27\ ¥ eilssn B FHA8(X (1).0)]
ROV (y,0) = (W> c
A det B (y)
M+1
i0., B (y) " 0, B ()
— ) . y C
x/]—"zl < 2\ > 1 (Q) Ry —Zéi)\) dc,
where

ay (W;l (Z) 7y)
ot (0.1 (45 ()]

and B (y) = 02¢ (X (y) ,y), and X (y) is the unique stationary point of ¢ (-z,y) in the support of a, as given
in the Morse Lemma, and finally,

1
R4 (ib) = /0 et (i) ((M‘f'l)!dt,

f(zy,) =

17tM+1
) forbeR.

The remainder term satisfies the estimate,

M+1 M
(3.12) SU‘I; mfu,d) ) (Y, A)‘ <Oy ? —(MHD Z ||8§a/\HL2(R;)xLoo(R§§1) J
ve |al<p+2(M+1) ‘
where p = {%] is the smallest integer greater than %, and if N > M +1+ %, then we also have the alternate
bound,

(3.13) sup ‘%ijf) (y, )\)’ < COyA"3~MAL H(Id —A,;)Na,\)

L1 (Rp)x L (Ry) '

Proof. Take V., W, X and W as in the Morse Lemma, so that

6(e,9) =0 (X (4),0) + 50 (0,0)" (26 (X (0))] W(ey),  yeV.

Using Lemma 24 together with a partition of unity shows that we may assume ay (x,y) is supported in W
for all y € V. Thus a change of variables

2= W (ay) = U, (2),

gives,

; -1 Uolzy)
Ia )\ = ZAd) 71/ d _/ Z)\(b(\l’y Z’y) a)\( Yy 5 d
b () /]R ar(@y)dr= [ e det [(0,9) (05" (2).9)]

/ Motogo)+w (v, 20) DD w(v )| an (T (2),y)
. det [(0,9) (¥, " (), 9)]
_ / . (mmyo)ﬁn agw;(y),y)z] ax (q,;l (), y)

det [(895\1’) (\IJ?Z1 (2) ,y)]

. L\ e 020(X (1))
—  *o(zosv0) / N 2f (z,y7 )\) dz,
Rn,

dz

dz
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where
ax (\Ijgjl (Z) 7y)
Fw N =55 [(0,9) (v, ()]
Now write
(3.14) B(y) = (026) (X (v),v),

and apply the Fourier transform F and its inverse 7! in the variable z and its dual variable ¢ to obtain
Loy (9, 2) = eP0lom) / Fo (P 559) (O F2N U ) (Q de

Using Lemma 26 with A = 4B (y), we have,

irp(z _isBwmTe
Zay ¢ (y7>\) —  Pé(@ovo 7)\/ e PhY F; 1 (f (Z,y)) (C) dc
det EB (y) R™
2 E elsgn B(y)%ei/\qﬁ(wmyo) ()~ le
= P e—le—l 2, d )
( A ) det B (y) - - (f(zw)(Q)dC

Next we use Taylor’s formula with integral remainder to obtain that for any M > 0,

b - (ib)
oib — Z + Rag4q (ib),

= !
where
Rarsn @) = [ ey O g (R Gty < P
M+1(Z)—/Oe (b) mtan |M+1(Z)\_m
and so with
¢"By) ¢

b=

we have

o\ ¥ gilsen Bw)FHA6(X (9).v)] - N BURY
(3~15) IGA@ (y>)‘) - <>\> \/W /n Z 2)\ z (<az B (y) 8z> f> (O d¢

o\ § eilsen B(y) T +A6(X ().9)]
N ()\) det B (y)
M+1

0B () 0. -
<[ F < = >] / (C)RM+1<—z'< bW C)dc.

Finally, using the Fourier inversion formula [, 7! (g) () dz = g (0), together with the identities

vh0) = X(y),
det 9,V (X (y) 7y) = detld, =1,

from part (2) of the Morse Lemma, we obtain

[z ((rwo) 1) @ac= (2w o) o, osesw

Now when ¢ = 0 we have
PP i QR ) BN ¢ S ()}
det [0,V (T, (0),y)]  det[0.¥ (X (y),y)]
From the change of variable (x,y) — (z,w) where z = ¥ (z,y) and w = y, the Jacobian matrix in block
form is,
d(z,w) [
9 (,y)

=ax (X (v),9)-

Oz Oyz | _ [ 09 (z,y) 8,7 (2,y)
dpw Oyw | On Id,, ’
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" T d.x Oy } _ (=) _ { 0.V (z,y) O,V (z,y) ]1 — ! [ o ]

9.y Ouwy 9 (z,w) On Id, T det 9, (z,y) | 0n 0.V (z,y)
Thus we have by the chain rule,

0. d.x 0.y 0\ 1 Id, -0,V (z,y) 1" ( 0.
(o) = [z 22 ] (%) =awomam | o awes | (5)
B 1 Id,, On .
o det@aD\IJ (m,y) |: _ay\:[j(xay) 8I\Ij (xay) :| ( ay >

1 9,
det 9,V (x,y) ( —0yV (x,y) 0y + 0,V (2,y) O )

i.e.,

1
1 _ _
(3.16) “ det 0, (z,y) Oa
Thus when ¢ = 1 we have

PP} 10) = (a“ T [?3(;/)(@}2 ) ©
= " -1 1 a (:c,y)
= L(y,d,)—2 2% (m y)

det [a U (z,9)] le=x);
where
1 tr . 1
det 0, ¥ (z,y)} B () det 0, ¥ (m,y)az

is a second order differential operator in x with coefficients depending on both x and y. More generally, the
same calculation shows that for 0 < ¢ < M, we have,

J4
1 tr -1 1 ax ($7y)
({[%twmy)] B detamw,y)a“} det[azw<x7y>]) =

_ ¢ ax (l‘,y)

L(y,0:) = [&p

(0BG 5.) 10

Thus the identity (3.15), together with the bound ‘gMH ( f"BS){) )‘ < (Mil)!, implies that,

(<8Z,B< ) 62>M“f) Rarin

||a:?a)\||L2(RZ)><LOO (]RLL) )

(3.17) R (y,)\)’ < Oy A~ E- (D)

L (Ry)
< CuahEOED S
|a|<p+2(M+1)

where in the last line we have used Cauchy-Schwarz, the derivative identities for F, and Plancherel’s theorem
with the smallest integer p = {%] greater than 7. Indeed,

@l = [ [h©f (1 1eP)" (1 1g?) e
([ [(+ |§|2)’)ﬁ<f)\2d£)é ([ (+ |§|2)_2"df)é
Co ([ 100, -2 h@) o)

IN

-

IN
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for the function

h(z)

(08w o)

_ o g L AT a@y)
N { [893 det 0,V (x, y)} B () det 0,V (x,y) 81;} det [0, ¥ (z,y)]

tr —1 tr 1 M+1
To prove the alternate bound (3.13), we use the estimate ’RMH (71%)’ hS % to
obtain,
M+1
7 (e 0) "7 1) R
L (Ry)
1 - M1 1\ M+
AT fgl( 0., B (y)”" 0. f) s() / PMVNFS) (Ol de,
e |7 (e mw ) e 2 0) Lo
where
ay (\If_l (2) ,y)
fz = fz N :fz )
(7N ( T ) © = Fe O
o) = 2T )]
Y det [(0,7) (T, (2))]
From the estimate
Id—-A N
F. = / e Sy, (x)dz| = / —— z) dx
| Foy (Q)] ) . <1+|<|2> ¢y (@)
= | [ e -a) e, @ de] < -2V, ||
(1+1¢%) (1+1¢?)
we have for N > M + 1+ 5 that
1) M 2M+2 1) M N [
il < (= _
(A) [ |<fzf><<)|d<N(A> |1a-2.) “"y’LuRg)m(R;)/Rn (1+|<;|2)Nd<
1\ M+ N 1\ M+1 v
<[ = — < Z _
N(/\) H(Id ) @y‘Ll(Rg)xL“(Rg)N<)\> H(Id D) a)\‘Ll(Rg)xL“(R;}).
We conclude that,
n _ M+1
ROV N] < cuaimery ‘f;l (<az,B<y> 'o.) f)gMH .
L'(Ry
< Opr~(M+1+3) H(Id—Ax)NaA‘ . for N>M+y1+2
L1(Rn)x L (R7) 2
([l

Remark 30. The identity 0,% (X (y),y) = Id,, implies that det [0, ¥ (X (y),y)] = 1. Thus for £ = 1 we

have
1 —1 1 ax (xay)
0 { det 0,V (x,y) B(y) det 0,V (x,y) 0 det [0, 7 (z,y)] }

= By { 2ot 0, ¥ (2,9)) 7 0 det 0,0 (2,) + 02 [(det [0,9 (w,)]) " o (,9)] }
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where 92 [(det [0,V (z,9)]) " ax (x)] is
2 (det [0, ¥ (z,y)]) | °0, det 9, ¥ m,y)|2aA (z,9)
— (det [0, 9 (z,)]) 2 02 det 8,0 (z,y) ax (z,y) — (det [0, W (2)]) 2 8, det 8, (z, y) Dpan (z,y)
— (et [0, W (z,)]) 2 8, det 0, U (z, 1) Dpax (z,y) + (det [0, W (z,9)]) " 2ax (z,y),

and so when we evaluate at © = X (y), we obtain that (det [0,V (z,y)]) " 02a (x,y) equals 02a (X (y),y),
and hence,

{20(X (5) ) + O (1900 ey + 03 e ) }-

i (2 ¢ il B E (X (v).w)]
P (5. X) = ( )

A det B (y)

Thus every gain of % costs two deriwatives of a in x (ignoring the contribution from 10zl oo mn) +
||a>\||Loc(Rn)), which dictates our definition of the parameter d in the subform (4.4) below.

Note that we can write the formula for &Bffg ¢ (y,\) compactly as

2r\ 2 i il B I HA(X(w).w)] ¢alz,
(318) P, N = (> ( <{L 19, BL™"9, } y)> lo=x(9)>

A 22)C ¢! Vdet B det L
where
(3.19) L=09,Y(z,y) and B= B(y) = (020) (X (v),y).

4. STARTING THE PROOF OF THE PROBABILISTIC EXTENSION CONJECTURE

We must prove the truncated probabilistic extension inequality (1.9),

2n
n—1

]E‘gg T Z ar A?;;{f SC”f”Lp(B(o’%))v p >

IeglU] Lr(hn)

However, we will instead begin by setting out to prove the much stronger truncated deterministic extension
inequality (1.10),

Ty AL < O llin(a(0.4)) -

Ieg[U] LP(An)

and only when we run into difficulty proving this, will we resort to using expectation. Thus we begin by
considering its equivalent bilinear inequality

< > A7 >§|f||Lp||g||Lp/

Ieg[U]

Our initial splitting of the above bilinear form is modeled after that in two weight testing theory using
(1.22),

o (5 o)

Ieg[U]

> (Tan AL

(I,J)eGIUIXD

SIRED SIED SHD SEEED DI S REFCEry

(I,))ePo (I,J)eER m=1(1,J)€P,, (I,J)EX
= Bbelow (f> ) + Babove (f7 ) + Bdisjoint <f7 ) + Bdistal (fa g) .

We further decomposed the pairs Py and P, in (3.3) and (3.4) according to the oscillation properties of the
inner product

(T A . 85k = (THEM ) (S ™ L") (S ™ 0B
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and we will continue to do this for R and X when needed below. we also will split both disjoint and distal
forms into upper and lower subforms in (8.1) and (8.2) in Section 8.

(1)

(2)
(3)

(4)

The below form Bypejow (f, g) combines stationary phase with either integration by parts or moment

vanishing, and only its subform Bﬁﬁow (f,g) for k,d > 0 requires the strict inequality p > -22.

n—1
2n
n—1°
The above form B,pove (f,g) is less critical and easier to handle in that it doesn’t use stationary
phase, and is in fact bounded for all 1 < p < oc.

The disjoint form Baisjoint (f; ¢) is handled similarly in some places, and made easier in those places
due to the fact that stationary phase is not needed, because the critical point of the phase lies
outside the support of the amplitude. However, in those difficult places where large numbers of inner
products are resonant, i.e. without either appropriate oscillation or smoothness, probability is used
in conjunction with an interpolation argument between L? and L* estimates.

Bupper

The upper distal form BPP7) (f, g) is handled as an extreme case of the upper disjoint form B4pbe . (f,9)

Moreover, the subforms with d < 0 can be controlled by relatively simple arguments when p >

in Section 8, and the lower distal form B2t (f, g) is bundled together with the lower disjoint form

Biuera (f;9) and controlled using probability in Section 9.
We have
n— n n— n o 1 n— w 1 n

(42) ‘<T Al;nl,n f’ J:Zg>w‘ = ‘<Th1;n1’n7hJ;Z>‘ ‘<(Sn,n) f’ hl;nl>‘ ‘<(Sn,n) g, h];n>
(g w2 |
(Thit ) {/ A3 (2] do (x)} {/ A9 (6)] de (g)} ,

VI s | A5
since

(4.3) /R -

DTS (@) do ()

()™ £ 1) " do (@)

~ (S ™ £ 03 VI,

-
[((52.)7 e
‘<(Sm;)_l 9, hz};n> m

Q

n—1,m
hI;n ’

Li(o)

Q

INIGIEMG)

/.

Thus we now turn to estimating the inner product

(Thi W) = / { / IR () dm} WL (€) de.

and then using these inner product estimates, we will bound the two bilinear forms Bpelow (f,g) and
Babove (f; 9), along with some of the subforms of Bagisjoins (f,9) and Baistal (f, g), namely those comprising
the upper disjoint and distal forms B;PE  (f, g) and BYPPYT (f, g) (defined later).

disjoint distal

distal

In faCt, if we denote by ‘Bbclow| (f7 g), |Bab0vc| (f; g)a ’Bupper ‘ (f7 g) and |Bupper (f, g) the forms Bbclow (fv 9)7

disjoint

Babove (f,9), Birs  (f,g) and B5YYST (f, g) with absolute values taken inside the sum of inner products, then

disjoint distal

we will prove the following ‘deterministic’ estimate in which probability plays no role.

2n

Proposition 31. For p > =7 we have
‘Bbelow| (f, g) + |Bab0ve| (fa g) + Bgilj)sirnt (f? g) + ‘Bgf)si):f (fv g) S ”f”LP(R"*l) ”g”LP'(R") .

Proof. This follows immediately from (6.1), (7.1), (8.6) and (8.7) below. O

Remark 32. Proposition 31 shows that the Fourier extension conjecture (1.1) with p = q is equivalent to
boundedness of the lower disjoint and distal forms,

|Boint (f,9) + Batvial (£ 9| S Il Lo ggn-1y 91l or gy -

Note that the small positive constant 7 in the construction of the smooth Alpert wavelets is fixed through-
out the estimates below, and so powers of % depending on n and x will often be absorbed into the notation

of approximate inequality <.
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Notation 33. In an inner product of the form (Tp,v), we refer to v as the amplitude function, and to ¥
as the pairing function.

4.1. Pigeonholing into bilinear subforms. Recall the decomposition (with bounded overlap) of the pairs
(I,J) € G[U] x D of dyadic cubes introduced in (1.22),

GUIxDP=P, U |JPm URU X,

m=0
where
Po = {(I,J)€GU] xD: Tian (J) C @ (Cpsendol)}
Pm = {(I,J)€GU] xD:2™" 1 CU and mean (J) C @ (2" Cpseudol) \ @ (2" Cpsenaol)}, mEN,
R = {(I,J)eGUxD:®(I) C man (Cpseudod)} -

In treating the below form Byeiow (f, g), we will consider the inner products
<Tg A?;;l’" f, A; Zg> _ / /R - An 1 n )e—ié(r)'fdx A;Z g (&) de = <Ta'h7;;;1’", hzu;> <f, h?;;17"> <g, h32> 7

<Tah?;1m,h?;2> = / / R () e @Sk (€) de,
n Rn— 1 7

for (I,J) € Py C G[U] x D, and as in (3.3), we further decompose the index set Py of pairs by pigeonholing

the side length of J and its distance from the origin relative to ﬁ, the reciprocal of the ‘depth’ of the

spherical ‘cap’ @ (I):

Po=J Py, where
kEZ deZ
phd = {(I, J) € Py £(J) =2, and 2¢ < ¢(I)% dist (0, ) < 2d+1} :
for k,d € Z.

Then we define the associated subforms,

(4.4) Bl iow (£:9)

S (Tshp .

k,d
(I,J)eP,

We decompose the disjoint form Bagigjoins (f, ¢) into subforms Bﬁli oo (f,g) similar to that done for the

below form Bpelow (f, g). Recall that in (3.4), for each m > 0, we decomposed the index set
P ={(,J) €GU] x D: 2™ C U and mean (J) C @ (2" Cpseudol ) \ @ (2™ Cpsendo! )} ., 1<m<ecs,

of pairs by pigeonholing the side length of J and its distance from the origin relative to 70 )2, the reciprocal
of the ‘depth’ of the spherical set ® (I):

= U U Pk 4 where

kEZ deZ
phd = {(1, J) € Py s €(J) = 2%, and 27 < £ (1) dist (0, J) < 2d+1} ,
for k,d € Z,
and now we define the disjoint subforms,
k,d, _ -1, ;
(45) Bdl%J:;Lnt (f7 g) = Z <T A}l;n ! f’ 7; Zg>
(1,J)ePh?
We point out that in those inner products in the disjoint form with resonance, such as when k£ = 0 and
m = —d, we need analogues for smooth Alpert wavelets of the traditional L? and L* estimates averaged over
involutive smooth Alpert multipliers. We then write

upper k d,m lower k,d,m
d15j01nt E :E : z : dlsJomt and Bdlbjomt 2 :§ : E :Bdlsjomt

k€Z d>0meN k€Z d<0meN
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We defer the analogous pigeonholed decompositions for the above form Bapove (f, g) and the distal form
Baistal (f, g) until needed. Now we turn to the four principles of decay used on the smooth Alpert inner

products <Th?;;1’", hT}Z>, followed in the next subsection with the interpolation estimates.

4.2. Decay principles. We introduce four different principles of decay in the oscillatory kernel of the Fourier
transform, namely

(1) radial integration by parts,

(2) moment vanishing of smooth Alpert wavelets (for both h’};l’" and h77),
(3) stationary phase of oscillatory integrals,

(4) and tangential integration by parts.

These four principles of decay will be used as building blocks for compound principles of decay, which are
obtained by iterating the exact formulas for each principle, before taking absolute values inside the resulting
integrals, in order to obtain estimates. These estimates are then used with square function techniques as in
[SaWi] to bound the three forms Buelow (f, 9), Bdisjoint (f,g) and Babove (f, g). However, in order to handle
resonant subforms of Baisjoint (f; g), We require an additional decay principle involving interpolation of L?
and L* estimates for smooth Alpert pseudoprojections, that is described in the next subsection.

Our baseline is the following rather trivial L' estimate, which we refer to as the crude estimate,

(4.6) (o) < o], sl ~ VT
(s = ozl ool = VI o152

where we have used (4.3) at the end of the second line.

4.2.1. Radial integration by parts. First we improve upon the crude estimate (4.6) when (I, J) € P(f 0 with
k>0, ie. £(J)=2* namely we show that

n—1,n n,n —k n—1,7 n,mn ~ o—k
(4.7) [(Tni, ’,hJ_,g>‘ < Cn2 kN‘h,m I ]|~ 2 T
(7 830 £, 8510) | < wg|,, ~ 2 NI () (o)

To see this, recall the change of variables (3.6) made earlier,

(rwg gy = [ ] e O @) deds

//Rn 1 /Rn . MDY (@ )0 (y, A) dadyd,

= o(2)-2(y),
ol (x) = hy, " (x) and ¥7 (&) = B}1(E),

~n " )\n—l
Gy = 5 (/1= ) N
1 =1yl

1 N
9}\> ixP(z,y) _ eiAd)(m,y)’

where

<

w

@

N~—
|

We use the formula

to obtain the equality,

cirb(@y) ~,
(48) (o) = [ S s A @ T o dey
Rn—1 Rn—1 ¢



44 E. T. SAWYER
which can then be estimated by

n— n,m ~n
(4.9 (Tt gy S et [ o5 o] dvan

NN . 1 1 N
il /R/Ml o5 ) (m{nw) )

1
—— ) el ||oF )
which gives both lines in (4.7).

A

Q

A2 g =27,

of wJ

4.2.2. Vanishing moments of smooth Alpert wavelets. Now we improve upon the crude estimate (4.6) when
(I,J) € PP° with k < 0, i.e. £(J) = 2¥, namely we show that

(4.10) (Tt | < e |mgn| ey~ 2T
(T 8350 £, 850) | < Gzl sgl|, 2 T (2o (gt

For any entire function f, Taylor’s formula with integral remainder applied to t — f (¢z) gives,

4 1 _\K
f) = Zg}'fﬂf ) oo+ [ (et ) S

I N O LSRN ¢ S )
_ ;af O+ [ 10 )it

which shows that for any x € N and b € R, we have

& ()"
ib _
(4.11) e = ;) o+ B (i),
where
1 ) 1— K K
(4.12) R, (ib) = / ' (ib)" %dt and |R, (ib)| < (Hlﬂ o
O . .
We also have
‘n o
(4.13) |0y Ry (ib)] < TESk for 0 < /¢ <k,
K .
DR, (ib) = 0fe® =i%™®  forl> k.

Now let c¢; denote the center of the cube J and write,

k—1 . 0
o iD(@)E _ mi(x) ey —i®(x)-(E—cs) _ g—idb(z)cs {Z (i@ €=c)) |\ p (it () (- cJ))} .

!
= 4

Note that

1 K
TR, (i (2) - (€~ ) = / ¢ R Ee0) (L (2) - (€ — )" DL ;.t) dt
0 :

Since h';! has vanishing moments up to order less than , we obtain

(4.14) <Th?;,:1’",h” / /R 1*@ @Epp B () dwh'y) (€) dE

— —i®(x)-cypn— 17/

-/ e—mmh?;;l’"(a:){ RK<—z'<I><x>-<5—cJ>>h’;;:(f>ds}dx
Rr—1 Rr ’

£=0
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From the bound for R, in (4.12) with b = —® (z) - (£ — ¢;), we have

/ h?ﬁl,n ’/ |q) _C])‘

n”r]
,Hl hy (g)(dgd:c
D) M 195 0~ 27 /10T 1]

4.2.3. Stationary phase with bounds. Now we improve upon the crude estimate (4.6) when (1, .J) € Pg’d with
d>0,ie JCK(), 0(J)=1,and ¢(I)*dist (0, ) ~ 2¢, namely we show,

—dnzt —d 1 i
st (1ot (L)) v

(T ar 7 ranng) | g2 <1+2d< ) ) T ({7 (9. h)
; wd/ ;
where 0 < 7 < 1. For this, recall the change of variables in (3.6) and (3.7),

(Th ) = / / EPEIERII (3) BT () dadg
n Rnfl ’ ’

// {/ AO) (m)dm} D (y, ) dyd),

R JR?-1 (JRn-t

el (x) = RN (x) and 97 (&) = B}(E),

~ )\n—l
VW) = v (Ay,Am) ﬁ
I—1ly

Applying Theorem 29 with n replaced by n — 1 and ay (z,y) equal to ¢} (x), shows that the oscillatory
integral

IN

(4.15) [

A

(4.16) (T )

)

where

<

B

@

SN—
|

I (y,\) = /Rn 1 ei’\¢(m’y)¢? (z) dz,

satisfies
(M+1)
Iap}’,(ﬁ( ) ‘ng"q& y: +Z§B¢ b ya +m‘ﬁ?7¢ (yv)‘)y
where
o\ T ilsEn[026(X (1)) FHA(X (9).)] .
4.17 A) = | — X ,
(a.17) Bopo 00 = () (X )

and for 1 < /< M,

y, 3 i[sen B@) T+A6(X (1))
’ ) 2mr\ 2% e 4
B, W) = ( )

EYASY det B (y)
1 -1 1 }e e7 (X ()
X 896 B a;c )
{[ det 0,V (X (y),y)} ®) det 9, ¥ (X (y),y) det [0,V (X (v),y)]
and
9\ "7 pilsen Bw) F+Ae(X (y).y)]
RO (1)) = (W>
r A |det B (y)|

M+1

i0., B (y) " 8. r -1
< 22)/\ >] f1(Qgms (ZCB(y)C> dg,

x/f;l
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and where B (y) = 92¢ (X (y),y), and X (y) is the unique stationary point of ¢ (-, y) in the support of a,

as given in the Morse Lemma, and p = [%1 is the smallest integer greater than %, and finally gar41 (b) =

L[t (b—t)™ dt for b € C. Thus at this point we have the formula,

M! JO
/ / { / R (z)dx} b (y, \) dydA
Rn 1 Rn 1

B //]Rn1 AW (3, A) dydA

In the case ¢ (z,y) = @ (z) - ® (y) we have X (y) =y and

B(y) = 020 (x) ®(y) lamy=02\/1 — [2]* [a=y /1= |9)?
1 xxt
= | ———Tder———— ey | V1 - Iy

(4.18) <Th?;;1’", h3;z>

2 3

1 — |z (1 - W)
tr
vy
= Idn—l 2
1—y
so that sgn B (y) = —(n — 1) and
2

S — __Y1y2 _Y1Yn-—1

1-[y|? 1-lyl? -yl

_ y2y12 —-1— Y2 . _yzyn721
det B(y) = det 1—lyl 1—lyl 1—.|y|
2

_Yn—1y1 _ Yn—1Y1 . 1 Yn—1
1-|y|? 1-|y|? 1—[y[?
-1+ |y‘2 - y% - 1’!/,1‘272 —Y1Yn—1
1 —Y2Y1 —1+yl" -3 —Y2Yn—1 (_1)7%1
= det 72 . . = 72
1=y : : 1— |yl
2
—Yn—1Y1 —Yn—1Y1 e 1 o [T i V-

by induction on n.
In particular then, from (3.9) and the above calculation, we have ¥ (X (y),y) = 0, ¢ (X (y),y) and
0,9 (X (v),y) =1d,, and so

n—1

2T 2 i[— (n=1)7 1)7\' 2
By o 0N = () T el 1wl ).
which can be written in the variable £ = ()\y, /11— |y|2> as

n—1 = 21 = 5” 1(\5\ L l)w)hnflm (5/> r_
mhl’m N (5) <|£|> |£| Ik |§| ) 5 (617"’7£n71) .

We compute that for J € K (I) and £ (I)*dist (0, .J) ~ 2%,

A

n, n fn 1 |§|—M n—1, il n,
[(Bigaomoti)] =| [ Bigzonc @izi0e]=| | (a) i it (g ) it 0 0

1T (s)‘ | (5) |
/ , (dist(o,ﬂ) RN - mlf a) g 9%

R S S (S R
<dist(0,J)> |I|J|J|_<€(I)2dist(0,J)> Il <2 ] ]J].

Wy )| de ~ (

dist (0

Q
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The intermediate terms mfﬁ ¢ (y, A) can be estimated in a similar way.
7

Next we estimate the inner product with the error term i)‘i;l\f_tl,? o using the bound (3.13),

Ik

n—1 1
< —n=l_prq il
LRy )xLee(Rp—1) CaA E(I)2N o

’m%ﬁ? L, )\)’ < G T M- a,)Y

for N > 1+ %*1, to obtain

(M+1) nn \| _
(4.19) ‘<9%h?m1,,,’¢, h‘]m>‘ =

R O RO
R Ik ?

(1>n;1+l ) 7] ~ 2t +1) (L T 11171
dist (0, 7) 01y o |

WhereT:Nf”TH>O.
Adding these estimates gives,

[l

1

< {f (27 4+0) 4 g7 43001) (6(1))} T
{=0

which completes the proof of (4.16). Since N — ’%1 € %Z, we may assume 0 < 7 < 1.

4.2.4. Tangential integration by parts. Finally, we improve on the crude estimate (4.6) in the case k = 0,
d > 0 and m € N using a tangential integration by parts as our last principle of decay, where the supports
of I and ®~! (m.,J) are separated by at least £(I). Let (I,J) € P%? with d > 0, i.e.

d—1 2d+1

S < dist (0,) < ——.
I ¢(I)

2
dist (mgan, I) = 2™¢(I), ¢(J)=1, and .
Recall again the change of variable in (3.6) and (3.7),

(o= [ [ st wny € dsdg

—i z ~n
= [ [ [ e @) 3] ) dedyan
R Rn—l R”_l

where
¢(z,y) = O(x)-2(y),
Pl(@) = R (x) and @7 (€) = W7 (€),
~ n—1
Ha = o (o) A
|

1—y

Here the supports of 7., J and I are separated by a distance of approximately 2 (I), and £ (manJ) < £(1),
and this suggests we should integrate by parts in the variables x and y.

So let y; = @7 (Tiancs) and v = ﬁ € S™2 be the unit vector in the direction of y; — c;, which is

close to the direction of y — z for z € I and y = ® ! (7ané) with € € J. Consider the directional partial
derivative DT = v - %, and note that

D3¢ (x,y) = (Dv®) (2) - @ (y) -
Since (Dy®) () is perpendicular to ® (z) in R™, we have the estimate
|D€¢($’y)|%|l‘—y| ) JTEI,§€J.
Now we compute
Dee ) = —ixe= M@V DI (2, y) = —ide M@V (D @) (2) - B (y),

and so

N
1 ) .
D® —ixp(,y) _ —ir(z,y)
(—M(Dv@)(x)-@(y) ) ‘ ‘ ’
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which gives,

(4.20) (ThyM" )

Jod b { (vmwwsm™) N e“‘”“”} @1 () T (. \) dedyd

N
_ 4N ixp(z,y) x 1 " ~n dA
= g /R/an /an e { (Dv (Dy®) (2) - @ (y)) } o1 (@)Y (Y, A) dwdyTN.

This integral can be estimated by
1

: /R /Rn—l /RH <D‘3f (Dv®) (2) - (3) ) : ] ()

where we have the following pointwise estimates for N =0 and N =1,

1
o7 (@) S —=
]

[(Tmi )

1 |~n
)\TV ‘1/1J 2 /\)‘ dxdydA,

1_ 0.7 ()] o] (x)] | (D2®) (z) - @ ()|
AT A(Dy®) (z) - @ (y)] M(Dy®) (z) - ® (y)]?
Vin Nl
e—yl e —y[P T A2 LI) T N (2me (D))
< LI S 1 1
~oaeme (DI dist (0, ) ¢ (1) /1]

We claim that by induction on N we have

and D o7 (x)

(Dy®) (z) - @ (y) ™"

_1 1
eI) /|1 VI < n
| l

it

n
<
~oA

1
)\TV

(4.21)

T 1 N Yl —Nm 1 : 1
<DV<DV¢>><w>-¢<y>> o1 @) 32 (dist<o,J>e<I>2> 1

For simplicity, we illustrate the inductive step in the case N = 2, and compute
1 1
Dy Dy o7 (z)
(Dy®) () - @ (y) ¥ (Dy®@) (x) - @ (y) "'

)
Dm( Digl(x) o} (x) (D2®) <x>~¢><y>>

“\(Dv®) (@) -2 ()] |
(D)’ el (), Deel (@) (D5
[(Dy®) (z) - @ (y)]* (Dy®) () -
¢ (@) (D39®) (2) - @ (y) ) [
[(Dy®) (z) - @ ()] [(Dy®) (z) - @ (y)]*

which gives,

1

)\2

N

(Di (Dy®) (i) o (y))2 v1 (@)

AN

1 1 + 1 n 1 1
A2\ 22mp(nt o 23me(nt o 24mp ()t ) (/I

2
< 11 1 = 972m ! .
~ o2 22mg([)4\/m dist (O,J)E(I)2 |I|’

which is the case N = 2 of (4.21). The general case is similar.
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The estimate (4.21) leads to the inner product estimate,

(4.22) (Gl
< Jho S {(m(Dv«b) é)-@@))N}“"f () [#% v )| dodyar
N
—Nm 1 1 |~
< /R/R"il/wflz N (dist o J)K(I)2> \/mllﬂz (y,/\)‘dxdyd)\
<

N
_ 1 1 ~1 _
9~ Nm I H A H ~ 2~ NOntd) ST,
(dist( ) oitl] O VAT

0,J)€(I)
since dist (0, J) £ (I)* ~ 2% for (I,.J) € P%4, d > 0.

5. INTERPOLATION ESTIMATES

Here we describe the decay principle needed to handle sums of resonant inner products by probability. In
fact the probabilistic estimates here rely only on the transversality induced by the curvature of the sphere,
and not on stationary phase estimates. Throughout this subsection we will use the familiar notation @ for
the Fourier transform of ¢, and we will use the parameter s € N to pigeonhole the side length 27° of a cube
I e€@G. Let

Q= > ALY, where G, [U={I€G:I1CUand((])=2""},
Ieg,[U]
be the Alpert projection onto G [U], i.e. Ar,, and A}, are restricted to dyadic subcubes I of U at depth s
in the grid G. Then we have

(Q?])‘ [o= SHWQ?J (Sn,n)_l =5 Z <(Sm,n)_1 [ h}l;}'—ﬁ)l> hTIl;Til

Ieg, (U]

D2 ()™ FRE R = DT A

Iegs[U] Ieg;[U]

Let ¢ € C* (R™) be a smooth nonnegative function satisfying

[ 1 if €€Br(0,1)
(5.1) @(5)—{0 if §¢B§n(0,2)’

and set
e (&) =27 (27%€),  fort >0,
where we note that the scaling is with respect to 27 instead of the usual scaling ¢t. Recall that ® (z) =

(m, 1/ |x|2) € S"71 for x € S. Define the spherical measure f1 by

(5.2) flz) = &, A?Klnf AT Ly f(@71(2)) det 9@~ (2) dop—1 (2)
= {((Skm)” f,h?;;1>h" (@71 (2)) det 00 (2)dor 1 (2),

and set
fa)= D M) =20 > f(2)=0.Q)*f.
I€G,[U] I€g,[U]
Note that the spherical measure f has mass roughly '<( e ,]) fohT 1>’ 2-5(n=1) for I € G,[U] and is

supported in S™~ 1.
Here is the model result of this subsection, where we recall that

(AaQi)® f = S0 AaQl (Se) " f= > ar A1

I€g (U]
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Proposition 34. Let n > 2. Then for p >
felrLr (R” 1), we have,

=, there is €y, > 0 such that for every s € N, and every

T [(4aQi)* 7] |

1
5.3 EY T <o .
5.3 (2 o) ST gy

where the implied constant depends on n, p and U, but is independent of s € N.

This estimate is a building block toward controlling the resonant portion of the disjoint form, which
however requires a much larger localization to a ball of radius 22°.

We prove Proposition 34 in three steps, beginning with Plancherel’s theorem in the form of a lemma
that allows improvement of the traditional L? and L* curvature estimates in the presence of probability
and Alpert wavelets. Then we use the scaled Marcinkiewicz interpolation theorem to obtain the desired
conclusion if certain L? and L* estimates hold. Finally we establish these L? and L* estimates to complete
the proof of Proposition 34.

Recall that

(5.4) 5= 0. @)% fand fh = (A7,177)

For s <r < 2s, define a fattened n-dimensional measure f3 , by

(5.5) for=fove,= Y, foxee= > fi,  where fy, =fi*p, .
Ieg, (U] Ieg,[U]

We will use the upper majorant properties of L? and L* (we use this latter phrase loosely to denote that
convolution is a positive operation) to obtain Lemma 35 below in order to significantly reduce the norm

]

(15512) when averaged over involutive Alpert multipliers of f.
LP P An

Note: The n-dimensional measure f({))r = fé, * o, is supported in the fattened spherical cap
Ior = {z e R™ : dist (z,Supp fé) < 2_T} ,

which for r = 2s is roughly a rectangular block of side lengths 272 x 27% oriented perpendicular to
a normal of the spherical cap Supp fé. We have the estimate,

(5.6) e ()] S [(Sebf b 272 1, ().
Lemma 35. Suppose s € N, and ¢ is as in (5.1) above, so that |p,| = 1 on B (0,C2°%). Then for s <r < 2s,

we have
/ _
S
Rn ’

IRGKS

Fee @ B ©Pd= [ @] more

2252

© 17 ©F de.

| o] mmoreera

/ /3
R

Proof. From Plancherel’s formula, we have
T3P e (2 o ey 4
HGINEAGI A

and using Plancherel’s formula again with the convolution identity F' « G = F G, gives

4 — 4
©| 175 ©1" de

—~ 4 — 2
| |[me| meria= [ |nmsre el «
R’VL R?’I,
= | faefarerr e ©©) fixfir oo ©d
- — 4
— [T T, @ S fip o) o= [ [T )] de
s Rn

Here is the lemma that obtains the required LP bounds from improved L? and L* bounds.



PROBABILISTIC FOURIER EXTENSION 51

Lemma 36. Let n > 2 and s € N. Assume that

Then for p > =%, there is € > 0 such that

holds for every s € N with implied constant independent of ¥ and s.

S 25 | llags) -

5.7 s
(5.7) I

4
S
L4(An)

P
S 27 | fll o -1y 5

L7 (17517182 1*An)

Bl

—

[(4aQ7)*]

P,2s

S

—

[(AaQ7)*

:|{>,25

Note in particular that Lemma 36 implies (5.3) in Proposition 34 .
Proof. Combining Lemma 35 with the assumptions (5.7) gives the pair of inequalities,

friaits <
(e

~Y
L2(135121@25 1" An)
1
4

) =
L4127 121@5: 14 A )

T (400 7]

(8) "
Indeed,
HT Q%) f’m (1Z: 2181 An) — HT Q) f’m (1232123 220
= [ raptse) \@(@I 7 (O de
— 2 . 9
= / Jl@i*s] @ mm@riE©ra= [ @t ©f @ erde
= 5/‘\ < 98 22
H{(QU) f:|<I>,2s L2 (172 An) 2(5) ~ 112289
and
s H
T(4.Q0) f‘ LA (1227 82a]*An) < By || (4aQ0) f‘ L4(17312183: M)
4 o 4
< B / (e s), @ mmora=m [ | w(a), @ wm @
Ieg,[U]

— 4 —
— v [ X wantr) @ d=mpn [ || X a(ar)] @) a

1€G[U] D 2s ! 1€G[U] D25
4
— . 44
m nfla m S
= B [ |5 a(a5r),,, 0] d=mm [ [[aan®],, @] @
R™ | reg. u] g R ,
— Hom, s \# < s(n—2) H s ‘ < —s(n—2) 4
s | [(A0i* 1], o ST @ ST,

since all three operators in the factorization (Q?‘J)* =S nQY (Sn,n)_l are bounded on L* (\,_1).
These L? and L* estimates can be recast in terms of square functions by Khintchine’s inequalities, and
we will now show that the scaled Marcinkiewicz interpolation theorem applies to obtain (5.3).
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Indeed, by Khinchine’s inequalities, the above bounds are equivalent to

18702y S 252
57,0l

n—2

1p(0,25)An) IR ||fHL4(<7n—1)’

where St is the square function defined by

1

2

2
Srof=| Y [Tsoptmy
Ieg;[U]

The sublinear operator St is actually linearizable since it is the supremum of the linear operators L, f =
Ts Y reg. vy W A}L;l’" f taken over all vectors u = (ur)reg s With [ul,, = 1. Then by the scaled
Marcinkiewicz theorem applied to St s, see e.g. [Tao2, Remark 29], we have

n—2 n—2

0= 0, ,25(17(275)) g5

HST,sfHLP < Cn,p2%(1_9)2_5 (27%) = Cn,pz_ssn’pa

where
n—2 4 1 4 n—1 2n
n,p = 2——]—<-(1-{2—-- = — ,
T ( p) 2( ( p)) 2p (p ﬂ—1>>0
for p > 7?111' Another application of Khintchine’s inquality converts this bound back to the expectation
bound,
1
EHS T .A s\ P P < C 2—sen p
295(U] (AaQp)™ f Lr (B (0,2°)) ~ “n.p ' ”fHLP(]R”*l)'
Thus we have
s s\ p —Spen,
Biyé, o1 ‘T(AaQU) f(é‘)‘ (B, (0.2 S 27 | f s n-1y
which completes the proof of Lemma 36. O

It remains to establish the improved bounds in (5.7), which we accomplish in the next two subsections.
Once this is done, the proof of Proposition 34 is complete.

5.1. The L? estimate. We first compute the norm of A%S?J from L? (\,_1) to L? (|@\2 )\n)7 where
S j— s/‘-\
Aéf/f - ((QU) f)@,zs'

We write f; = (Q‘fj)‘ f for convenience in notation so that we have,

2

|2, 1

o NG EAGIR

L2(122A)

= [ UTaa 20O Uehaea (€
> ]/]R fé?aps () fq{{;?ps ©de= > /Sm (5, v ) (&) de

I,KeG,[U I1,Keg,[U]

Noting that the supports of f<11>,25 * g and ngS * (o are essentially disjoint unless I ~ K, and recalling the
definition of Z5-+ in Note 5, we can use (5.6),

n—1

272 17 (),

Fa, ] S |(Sanfhint)
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with r = s to estimate the above expression by

(5.8) H f’L? (1Z212A0) S Z / |f<1>2s*%0s ’ 3

Ieg,[U]

2
S X [ st e s, e ) e
1eg U’ R"
— 2 sosi=t 2
s Y [sarm)| [ e, o] w
I1€G.[U] e

where we have used the fact that the positive measures |1127 * <ps| and 27°17,__, are supported in roughly

a common cube of side length 27%, and have roughly the same mass, i.e.
(5.9)

[ anve©i= ([ 1. @) ([ e©)= [ 1. @dxe [ @

Then we continue with

2s

- n—1 2 seos=L 2
e gy = 35 HSmit) () e
= 2 Y (s r b)) S 2 ST ) S 201 sy
I€g,[U]

This proves the first line in (5.7).

5.2. The probabilistic L* estimate. Now we turn to computing the norm of Ay, from L*(\,_1) to
L* (R™). We have using f§ = (Q%)* f that

4
1foldan, ) = / S (Gt e |
Rt \ reg. )

8 /;] ()™ £ 1) i ) o
= 2 \<<Sw>’1fvh?;?>\4 / h?;;l’"<x>)4dx

€6, [U] Rn—1

4

~ 1 aa\[P (1 _ 1, n-1\[P 1
i IG;U]‘<(SKW) f’hl;”1>‘ (\/W) . Ie%:[U]K(Sw) fvhl;n1> 1]
- Iegg[U]K(S”’")_l f’h}l%'_$1>’ =2 1)’f e(G.U))

where f = {<(Sw7)_1 ) h’},;l>}1 6.1 is the sequence of Alpert coefficients of (5’,“7)_1 f restricted to G [S].
’ €

s

Recall that H(Sm,)*1 f’ fll»(gn—1y by Theorem 15.

Lp(Rn-1)

-

Next we calculate the L* ()\,,) norm of A%S?Jf = ((QSU)‘ f)q) = (f7)p.0s

4 — 4
L4(An) = /]R" ‘(ffj')@ﬂs (g)’ d§ = /n IEQZ[U fq, 2s d
2 2

~ [ X Aa@fn© = [ | T i ©)] d

n

1,JeG,[U] 1,JeG,[U]
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by the Fourier convolution formula, and then by Plancherel’s theorem,
2

:/n Z f<II>',2s*f£}{,25 (Z) dz = /f@Zs f<I>23( ) f<1>25 f@Zs( )

1,J€G4[U] 1,J,I, J’eg U]

|48

L (An)

Now we compute the average Egg

4
Qs f HL‘*()\ : over all involutive smooth Alpert multipliers (AaQ?])‘,

where remembering that the functions fé,,QS have the n-smoothness built into their definition,

“w
Ebs ||A

- B Y > B [ (anfho) * (028d) ) (arhon) v (an i) (2) d2

1,J,I',J'€G,[S] (al,aJ,aI/,aJ/)E{—l,l}QS[U]

2: 2 : I J I J’ _
= 2 + /f@,Qs * f<I>,25 (Z) f<I>,25 * f¢,25 (Z) dz = 51 + 527
I,J,I',J €G,[U) I,J,I',J €Gs[U]
I=J and I'=J’ I=I'" and J=J'
since the only summands that survive expectation are those for which ayajaj-ay is a product of squares,
i.e. the factors occur in pairs of equal sign +1.

Remark 37. This is the key consequence of taking expectation, and is the only place in the paper where it
arises. Note also that in n = 2 dimensions, Fefferman made the critical observation that the supports of
the convolutions fC{),Qs * f;}{’QS are essentially pairwise disjoint, so that the L* norm squared of the sum is the
sum of the L? norms squared. This then led to the resolution of the extension problem in dimension n = 2.
However, in higher dimensions this observation doesn’t generalize in a simple way, since there is an (n — 2)-
dimension sphere contained inside S"~1 whose pairs of ‘antipodal cubes’ support functions whose convolutions
all occupy the same space. The products of distinct pairs of antipodal cubes vanish under expectation, which
leads to a favourable L* estimate.

We have
52*2 Z /f<I>25 f<1>25().ﬂ1>25 f<I>25 Z /|f<I>25*f<I>23 | dz.
I,Jegs[U I,Jegs|
Since the supports of f<1> 25 * fb.0s and f<I> 0o ¥ [T 5 are disjoint unless dist (I I') <1, we also have
E1=2 /f@Qs*f@Zs()f¢>2s*f¢'25( dz S Z /|f<1>25*f<1>2s { dz.
I,I'€G,[U] I€g,[U]

Altogether we obtain

17 2s 4
EQG AAaQaf L) N Z /|f¢> 25*f<1> 2s ( | dz
I,JeG,[U]
2
= /‘f@Qs f<1>2s ’ dz—l—z Z /‘fé,Qs*f%,?s (Z)‘ dz
I,J€g,[U]: dlst(I D)2 t=0 I,J€G,[U]: dist(I,J)~2—*

U+ Z ,.
t=0
Now note that the L' norm of f§ ,, * f 5, is essentially
bl 58 ell e~ [(Sen)™ £hrse) (Sun) ™ £ohrae )| et o sl
= ‘<( Hr)) f7h1n> <( fwz) fvhJH>‘ S(n71)7

and since the volume of Ry (I, J) = Zy-2s + Jo-2s is essentially 27" dist (I, J), we have
Ryt (I, J)| & |Ras (I, J)| ~ 27" dist (I, J) = 275", for dist (I, J) ~ 2"
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where the first equivalence is a simple consequence of the geometry of the situation. Thus we conclude that
for dist (I, J) ~ 27,

b ol € [(Se™ ) (™ )2
HK(%W Fobrn ) {(Sua) ™ Fohe |2

s(n—1)

1
s(n—1) I
2=sndist (1, J) (7

Q

Lt

Since there is A > 0 and a rectangle Ry such that |f§ ,,| < Mg, and Hf({,)%HLl ~ || A1g,|| 1, which again is
a simple consequence of geometry, we then deduce the comparability of the integrands for dist (I, .J) ~ 271,

T oo 1300 (2) 2 [{ ) ™ Folorie) ((Sn) ™ fr e )| 27

= ’<(Sﬁ7n)_1 I hI;n> <(Smn)_1 I hJ;m> ﬁlj)lms(lw (2)

9stt ‘<(Sn,n)71 fs h[;m> <(Sn,77)71 fs h];n>

Thus we have

1
s(n—l)—
2-sn dist (I, J) L. (1) (2)

LRy, (1,0) (2)-

S

Z‘I’t N Z Z / |f<II>,23*f£,2s (z)|2dz
t=0 t=0 1,7€G.[S]: dist(I,J)~2—t ’R"

S

DY > L 12 [ ™ e (S ™ o) Lo ()] 2
t=0 I,J€G.[S]: dist(I,J)~2—t ’ K"
<y > 22 ((8,) 7 Forin) ((Su) ™ S| 1B (1, )

t

0 1,J€G,[S]: dist(I,J)~2—¢

S Z 9—s(n—2)9t ‘<<Sn,n)_l f, hI;n> <(S’W7)_1 f hJ;F”> 2 =

t=01,J€G,[S]: dist(I,J)~2~t

w

Z Qta
t=0

where we have defined €2; to be the bound for ¥, obtained above.
Now recall that

Jre* ],

4
~ s(n—1) n—1
L4 (An—1) 2 Z <( Siin) f’h1”> '

Ieg,[U]
Thus for 0 < ¢ < s we have

2
Qt 5 Z 275(”72)2t <( HT]) fa hI R> <( H'V]) fa hJ r@>
I,J€G,[U]: dist(I,J)~2—¢
4
5 2—s(n—2)2t Z )<(Sn,n) 1 f7 hI;n>
I1,JeG [U]: dist(I,J)~2—1
4
< —s(n—2)gto(s—t)(n—1) ‘ -1 ) — 9—t(n—=2)9—s(n—-2) H ’
~ 2 2°2 Z <(Sn717) f) hl,n> 2 2 ( f L4(S) )
Ieg. (U]
since
lume of annulus ~ 2-t(n—1)
s s dist (1 ~2 0~ vo ~
#{J € G:[5] : dist (I,.7) } volume of cube 2—s(n—-1)’
which then gives
S S S 4
p, < 0, < 27t(n72)275(n72) H s\ ‘ ~ 9 —s(n—2) H s ’
; tN; twtz:% Q%) Hlpas) (Q7) fL4(S

Similarly we obtain

i 5 2—3(11—2) H( f‘

L)’
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and adding these results gives

“w
Ebq (|A

< 2—s(n 2) H Qs n'r/f‘

—s(n—2) 4
AaQé f‘ L4(An) S 2 Hf||L4(Rn—1) )

which is the second line in (5.7).

L4 Rn— 1)

6. CONTROL OF THE below FORM

Combining the above principles of decay, and staying the introduction of absolute values until the very
end, we will be able to obtain estimates on the inner products <Th?.;1’", h;iz>, which will lead to the

following form bounds for some fixed § > 0 depending only on n and p,
2n

‘Bbclow f’ g)‘ 5 2_6(‘d‘+|k|) ||f||LP ||g||LP' ’ for p> n— 1

In fact we obtain stronger bounds in which the absolute values are inside the sum. Indeed, if we define

Buaw| (Fr9)= 3. [(T AL £.8%09)].

(I,J)€Po

we prove in this section that
2n

(6.1) Boetow| (f,9) S 1 fllze llgllper . forp>——.

We will begin with the two easier cases involving d < 0, since each of these cases requires just one of the
decay principles described above.

Later we turn to the subforms involving d > 0, which are harder to control as each of them requires
combining two of the decay principles described above.

Remark 38. The next result shows in particular that the basic form BbelOW (f, g) is bounded using only the
crude estimate (4.6), and the strict restriction to p > 2" . See also the Direct Argument in Subsubsection
9.2.1 for a much shorter proof of essentially the same result.

6.1. Subforms with £ > 0,d < 0. Here is the conclusion of this first subsection.

Lemma 39. Fiz s € N. Then

62) N [Bl, (£ <5 S [T AR £ ane) <1l el . forp > T

k>0d<0 k>0d<0 (1 j)eph?

To prove Lemma 39, we just need the estimate (4.7) that used radial integration by parts, namely,

(Tni )| < one kY| . L =2 NV ko

Let I, = (1+n) I so that Supp A7, Y f C I, Note also that |I,,| =~ |I|. Then we have from (4.7),

‘Bllje(fow (fa g)‘ < Z ‘<T A}L;l’n f, Ag Zg>‘ 2—]€N (/ ’An 1 7, > </ ’AZ Zg
k,d

n,n
h]'n

n—1,n
hI'/{ ‘

(1,7)ePh . J)EP
- 2kN/”(I,J§>§,d </I ‘An e )’ > ‘AMQ 5)’d§
;
< o [ 2 PM( / A7 (@) dat, (f)) (”;M‘N}’Zg(f)rdf
s | [ S (s @), ©) P % [ |anmel gdg F

k,d
(I,J)eP, (I,J)ePy

2-kND. T,

)
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where

o[ X Jamee) w-[ (S| X 1)|enmel

]Rn
(I,)ePkd JED \r1eg: (1,7)ePh?

de.

We now choose a dyadic cube I; € G that approximates the spherical projection m¢a, (J) of J. So fix
J € D and let I; € G satisfy

el (Tean (J)) < L(1y) < L (Tan (J)) and I; C myan (J),

where 7.y (J) is the spherical projection J onto S"!, and where ¢,, > 0 is chosen small enough that such
a cube [ exists.
Now (I,.J) € Py if and only if
2d71 2d+1
Ttand C @ (Cpseudo!) and —— < dist (0,J) < ,
ta ( pseudo ) / (I)2 ( ) 5(1)2

which is essentially equivalent to

q 2d—1 P 2d+1
15 mnd O T <
2 Man 2 Ly andy [o50m—5 <UD <0 550,79

Thus for fixed J € D, where
Di={JeD:((J])=2"},

d+A

hed— A for

the set of cubes I € G with (I,J) € Pg’d is contained in the finite tower of dyadic cubes {ﬂ(k)IJ}
some fixed A € N. It follows that >, .. (17l 1 <2A and so

4 ’
b

e =/ X |anee] 2df</n<2 2A\Amg<g>\2>2d5592;,,

k,d
(I,D)ePt JEDy

by the square function estimate (1.17).
We turn now to estimating I'y. Since the cubes J,, in D;, have bounded overlap with measure roughly 2k

2\ %
/ (/ A7 (@) de, (E)) de
e (IJ)eP“

(6.4) r’

T/

Lz 2 (/ At (x)‘dm>2}1h(f) L

JE€Dx \1€9[8): (1,7)ePy?

2
</ a7 (@) d ) Ly, (6) de
" g€y | regs): (1,7)epkd NI

2 3 (/ A7 @) d )

JEDL \1€g[S]: (1 J)ePk:

2
T
(]

(NS}

Q

Now for each fixed .J € Dy, and I € G [S] with (I,.J) € P¥?, we have

0(J) = 28 0(1)*dist (0,7) 2 2% Tgand C @ (Cpsendol)
ey 2k
dist (0,J) ~ dist (0,J)’

0(I5) = L(miand) =
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which implies

~
=
2
o
17
Cf‘
%

DN =

acy
10g2m ~ log,

~
~

~ /)2 ;T,f"m =),

d—k—1
e(L,) ( 0g2£

Thus with d* = 1 (d — k —log, ﬁ) and A as in (6.3) above, we have for each J € D,

5 d*+A 2\ %
n—1, E n—1,
(/ ‘AI r nf ’ ) S (/(m) ’AW(S>(?J)§’@f (x)’ dm)
I€glS): (I J)epg; @\ s=d=—A \Y7"™ (),

< (24)%7! ) (/I ‘A mf()’ )p% 3 (/I ‘A?ml,nf(x)’dx>p.

1€G(S): (I,7)eP? 1€G[S): (1,J)ePy*

Altogether then,

p
(6.5) gy Y (/ A7 (@) d )
JE€Dk 1€G[S): (I,])ePk? In
<2y Y ( / \A?;;l’"f<x>\2dx>2
IU

JEDk 1€g(S): (I,J)ePk

“ 2 (B eevere)

1€gl[s] : (1D)ePy

Q

Now recall that Py = {(I,J) € G[S] X D : Tan (J) C P (Cpsendo!)}, and define

= J{J €D : man (J) € @ (Cpsenao])} -

Now for fixed I € G [9],

(6.6) 4# {J eD,: (I,J) e 7)(’;‘7‘1}
n—1
2 2d
Ka (1) (NDQ 0]
n+1
2dn 1 n—1
_ 271{277, —9 kn2dn <) :
E(I)nJrl |I|
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and so we have

P < kn k,d p ‘ n ln ’
rp s 2 Y (#{vene: wayerp i (m/
Ieg(U]
1 1 2 H
S gkno—knodn Z |I| ) (/ ‘A?mlmf‘>
I€G[U] [l 1,

%

= / > III’”‘“*(I /‘ N ) 1; (z) da
IeglUu | |
) b
< gin / <| |/\ 2 1I(x)> do |
S regu Iy

if p > % Now using Holder’s inequality with § > 1, and the Fefferman Stein vector valued maximal
inequality,we can continue with

m/‘ Sl @ d””szd"/s gm( |27 1’”‘) e

s [ |8 fart @) wszmis,

Ieg[U]

WIS
(NS

et s 2 [ [ S
S

Ieg[U]

by the square function estimate (1.17). Thus we have proved,

kyd _kNodn
‘Bbelow (fvg)‘ S2 FN2% Hf”LP ||g||L,,/ ) for k> 0 and d <0,
which gives
2n
k,d
S|B9 S Wl gl o Forp >
k>0 d<0

6.2. Subforms with k£ < 0,d < 0. This case also requires just one principle of decay, but this time we use
the moment vanishing decay principle instead of the radial integration by parts decay principle. From (4.14)
we have

(ThG ) = /S et e (w){ / Ry (=i® (2) - (€ = ) B (€) dg} da

and then from (4.15), we obtain the estimate,

n— —C n
[ ] [ B o )
S LD Nt 1971l ~ 27 |'“"‘\/IIIIJI'

The proof is now virtually the same as that in the previous subsection, but using the above estimate instead,
and results in the bound,

IN

(rng )

Bl (£.9)] S 2757 2% 1) llgll e . for k<0 and d <0,
which gives

2n
>3 [Bbd (9| S WAl gl o forp>

k<0d<0
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6.3. Subforms with £ < 0,d > 0. Here we will use the vanishing moments of h" .. together with stationary
phase. In the case k < 0 and d > 0, we have from (4.14), which used the vamshlng moments of hJ kS

<Th’;;;1”7, hiy > - /S e iP@rerpitn LN () { . Ry (—i® (x) - (£ — cs)) B0 (€) dg} dz

and using the change of variable & — (y, A) in (3.7) with <L = & (y;), this can be written,

Jesl —

(6.8) <Th" L h””’>
= TR (1) Ry | —iA® (x) - (@ _leslg da LB (0@ () — P Am1a)
- - s e (LL') K ? (x) (y) Y (yJ) €L Jik ( (y)) m
. 1y
d
= [ T V0 )
B 1=yl
where
I/\w (yJ,)‘) :/ 7l>\¢(z7y])90 ($ y7yJ)d
oy o S
and

—~

ol (x,ys,y) = B0 () R (—z‘)\fb (z) - <<I> (y) — %@ (yJ)>) = hi M (@) R (—i® (2) - (€ = ¢g)),

where R, satisfies the estimates,

1 K K
; — ith (21 \K (1 — t) |b‘
(6.9) R, (ib)] = /0 e (ib) H!dt‘ S T
1 ) (1 _ t)n —Z
RO®)| = | ol ] S at) < e (o)
0 K:

and y; is the unique point in S such that |C = =d(y ).
Theorem 29 with M = 0 gives the asymptotic expansion,

I (ys,\) =P~ (yJ,A>+%“) (¥, A),
0.0 v 07,0

I 17 I
where
B (grd) = (271->72Leisgn[@i‘b(X(Z}J)ayJ)]74r+)\¢'(X(yJ)v'!/J)r;](X( ) |
Y7, B DY 2 Ysr),Y5,Y),
eie A V1026 (X (y)y.)] !
and
(1) ( ) 91\ & eilsen Blyn) FHA(X (y0).y0)]
R yJa)‘ = ()
ahe A det B (y.)
1
id. B(yJ)‘laz> b -1
[ [ e B
x/}'z = il@m (it ac.
and where
1 1
gy ith a1 (1 —1)
Ry (Zb)_/o € (lb) mdh fOTbER,
and
0 (g1
¥ v (z)ayJay
(0.0 Flen = 2H )

det [(0,0) (5 (2))]
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We can rewrite the principal term as

o\ "I isen[0F0(X (1) W) 5 HANX (v) w) ~
) = (= X (Y),y1,
B, W) ()\> B ) 1 (X (Y).y7,9)

T.é
2 n—1
T\ * G-y -1)n 27
(}\) et AN =yl (v, v, 9)
n—1
e 1’”ez5< ) 7 5nAn(Cfr ¢y 5')
Pr ) )
€] €] les]” |es]” [€]

and the remainder term as

6.11) R’Y (y5,0)

»l9

<2ﬁ) 25 pilsen Bys) F+26(X (va),9.0)]
A |det B (y)]

i0., B (ys)" " 0. or -1
< [ro < o~ o (—iCBg’;) C)dc.

Now we compute that for x € I and y € mandJ,

N

(6.12) how- (20 - Lew)| < alew - own|sew).

A

wd pofo @) (20 - Law)| < Aew-ew)|sen. mazt

Since ‘A@ (z) - (q> (y) - <o (yJ))‘ < 0(J) £ 1, the modulus of the inner product <ap oy hf};z> is thus
bounded by, "

(s )< [ o omziofacs o], sz,
o) Ly ‘ )
. <di5t0"]> ‘ L VIS (dist O,J) 7] o | (M‘I’ () - (@ (y) - A@(yJ)»‘ Vit
1 ”Tl 1 ) ngl
< K I S S .

1 : . _dn=lo(k|k
= (“D) () [T~ 27727 ks /1]

% dist (0, J)
< ot lkls /T

To estimate the remainder term (6.11), we thank Cristian Rios for the following argument, which corrects
and simplifies an earlier one in a previous version of this paper. We first need to estimate derivatives of f in
(6.10). From the identity

9 ’ dPIR,
(6.13) G B (i (@) = Y <ﬁ> il (1) 5o [,H o, (ib (x

0#B<a

With R = R, b(z) = —A® (z) - (<1> (y) - <l (yJ)), by (6.9) and the fact that |525ib (z)| < £ (J), we have
that

dPI R,
dblBl

‘8;& (z‘)@ (@) <¢ o) - |c;|®(yJ)>)‘ < li

j=1

wVw“yuw
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Then, whever k > |a| we have

&ca;}’ (z)| < amas;? (@, v, y)’
- %( OB‘ ) (&jgah;ﬂ (x)) (M;{)QR,{ (ib(a:))>|
(6.14) < Zlfn W) 11n (z) E(Jﬁ

VI €1y~ VI o)

Now we estimate the first factor in the integral in (6.11)

f;l( <iaz7B(yJ)_18z>]f) (C):/ <[<iaz,B(yJ)—1az>] o (U5 (), g1 y) )eiZ( .
w(,)

2\ 2) det [(9,7) (T, (2))]
Since W, is a diffeomorphism we have that |det [(9,¥) (¥, (2))]| ~ 1, and |0] det [(0.¥) (¥, (2))]| S C;
for j > 1. Then by the worst case |&| = 2 in (6.14) we obtain

| i - .
H<Z@Z?B(2y;) 8z>] d;?[g%\;)(;)pygygéj)))] % 0 = y"’y)‘ : illn I(le)i((tz{i2
Hence,
‘ -
(6.15) le( <26Z’B(2yj) az>] f) O [, 3 S acs 5V
From the identity e*¢ = |¢|72V ( iy ¢0 z])N ei#C, we can also write
£ ( <iaZ’B(y")_laz>] f) <<>‘ ([ ((an )N <iaZ’B(y°’)_laz>] f) ¢ d
: 2) w(1,) PR 2)

and since, as before, we have the bounds

N
n-1 0., B (ys) "' 0.
(12952_7.) (i0-.B (y) >]
j=1
hence,

2\
Fl (

Combining this with (6.15) yields

o ( <iaz,B(yJ)‘18z>] f) o

2\

<l <Y 11, (2) £()"

AV oMt

‘3“2@1 (z,y, y)'

Si [ <7 L, @) L Sp Se WG
v

2) ay A VI et N e

(i0:.B ()" a>] f) o

,S%\/\I\E(J) min{l,1 ! }

(1) 1Y e
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Then, from (6.11) and the fact that |R; (ib)| < |b|, we obtain

(6.16) ‘m“) (s /\)‘
‘P[v
z zc?z,B(y )t a, g 1
= |detB /f e )|, <<>R1< B C>d<
1 11 ¢
< I LA

1y o1
T 2\/m/w—lmm{l’ICINE(I)N}C|2 B
1

)
)" LI, 1 R G
)\"TAHE(I)Z\/'H ; rer dr+£(I)N Nt dr | .

Choosing N = n + 2 so the second integral is finite, we get

%

L )" e 1 1 é(])"*P’eJH 7
AT (dist(O,J)é(I)2>%+2E(I)HS S

‘%@ (s)‘ <
0lé

S 20Tyt VT,
if we take Kk > N =n + 2.

Remark 40. This error estimate is the same estimate as that for the main term, but with an additional
small factor of 2724,

Combining the two estimates for the principle term and the remainder term, we have

< (%~ ,h"?Z> +‘<m(i> ,h"3:>’
’< R YR J;
< 27t o Me /ITTT] 4 274 2 ke /T

[N

when k£ <0, d >0, and k > n 4+ 2. We record this as
(6.17) (T )| S 2t 27 T,

Next, we will use the estimate (6.17), in the argument we used above to bound BbCIOW (f,9), to show that
there is 4 > 0 such that for all p > n2_1,

below

Bl (19)| S 2792795 £ gl for all k< 0,d >0,

Of course we now have d > 0 instead of the opposite inequality d < 0 used in the previous argument, but
we will see that much of the geometry of the decomposition remains the same.
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For k <0 and d > 0, the estimates (6.17) imply,

Biiw P =| X (Tarptrranig)l =] X (Teitewle) (£hp) (o5

(I, J))ept* (1,J)ePi
< (I’J%émKTh?nl’"f, Jing { N / A7 (@ }{ N / INAHT: }
s [z o6 {/\ Aptyg )dx}‘A’L"g (€)]de
- " aaepkt VIV "
< 2*d"7’12*"“'“/n {/ N )]dm}\ﬁmg(s)] dg

I, J)eP;

which is at most

restns [ L5 (f fagns |x>2 > ange|

(I,J)eP (I,J)epk

o\ %
A ( / \A?;;l’"ﬂx)\dxlj(f)) d
B\ a,nepra N
’ %
p’ P
2
X / ‘AJng f)‘ dg
" (zJ)eP“
= 2_dn7712_|kmr11—‘2-
We have

’

=[O e ) a-[ (X X )| ]

(1,J)eP JED \1€G: (1,J)ePy?

and now we repeat some of the geometric constructions relating to P(If 4 from before. Fix J € D and let
1 € G satisfy

enm (J) <l(1y) <7 (J) and I; C w1 (J),

where 7 (J) is the spherical projection J onto S*~!, and where ¢,, > 0 is chosen small enough that such a
cube I exists. Now (I,.J) € P4 if and only if

d—1 2d+1
JCK(I) and — <dist (0,J) < 5
t(I) (1)
which is essentially equivalent to
9d—1 9d-+1

I5mJoland 4| —— —— < 0(I) < | —
D mS 2 1y and [y S HD S G,

Thus just as in the previous argument, the set of cubes I € G [U] with (I,.J) € Pa? is contained in the finite
tower of dyadic cubes {W(k)IJ}ZZdA_A for some fixed A € N. It follows that ZIeg[U]: (r,necto I < 2A and
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SO

! ’
p_
2

- Y || 2dxs/ (zmlaz’zg () a5 ol

(I,J)ePy°
We see that on the other hand, since the cubes J in Dy are pairwise disjoint with measure 2¢7,

yaa
2

0 /Rn (IJ)EPM</ ‘A?Klmf ’$> H ) a

[\Z (J sszstofer)
" \vepe Lreguy (IJ)ePo” I
>

2
(/ [Ap @) a:) L, (€)dg
JeDk \ 1€0[U): (IJ)ePkd

e ([ orzsofar)
kd

JEDy, I€GU]: (I J)e

Q

[SI§S)

Now for each fixed J € Dy we have with A as above,

P
d+A 2

5 2
/ ‘A?Klmf ’ ) (2 </< (1)) ’A??é?mf (x)’dz>
mwis Iy

Ieg: (I, J)ePg o < s=d—A

< @it Y (/1 A5 (@) a )pz ) (/I NG )p

IegU): (I,J)ePk IeglU]: (I,J)ePk

Altogether then,

p
SEEED SE LIS (/ a3 ()] )
JEDy IegU]: (I,J)ePk In
b 2 g
< Yo S (/ AFf @) dm)
I
JEPY” K

JEDy IEGU): (I,J)ePkd
P

2

2t 3 > '””<|f|/ agty @) d ) ,

1€G[U] \JeD,,: (1,7)ePi?
and since

#{seDes (1)) e Py}

n—1 n
iyt [ 2en) 2y g 2 r’mzdn(l)"ﬂ
~ d ~ = — R ;

0(I1)? ||

2d71 2d+1
where Kq(I)=<¢J CK(I): < dist (0,J) < ,
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we have that

1 - 2 \?
s 2 S (w{seme @y e )P (III/ ’A,;Hl*”f(x)‘ dx)
IEQ[U] n 1,
< 2kn27kn2dn I;D—Zi'i / n 17] ‘
IegU]

—LH— fL U, : mn
= o [ grp 1<I/\ S \dw) 1 (2)ds S 2 11,

Ieg[U]

provided p > %, using the the square function estimate (1.17) as in (6.7) above. Thus we have proved,

n

k,d — K n 5
Bl (F9)] 5 2707 27 M 277 ) gl

< 27 0T Do e f L flgl e, for E<0,d >0,
and so
k —d
ZZ\BMOW 9)| D27 2 T | £l gl S s gl
k<0d>0 k<0 d>0

prov1ded p> and x > 1. Note that we only needed stmct mequahty P

n 17

1 - see Subbubsectlon 9.2.1.

6.4. Subforms with k£ > 0,d > 0. We take both k& and d to be nonnegative, and begin with the radial
integration by parts formula (4.8) to obtain,

‘ 7 -
(rutmasz) = [ L U 9 i e 00 ) o
(0,00) JRA-1 | JRA—1 ¢ (z,y)

~n
o L T 00T G i,

. ul
Ty = [ e 2L,
Prs Rn—1 ¢($,y)

which is an oscillatory term having the form of (4.18), but with amplitude

where

7
o ¢j ()
QOI (‘T7y) = -, \Z
¢ (x,y)
in place of ¢ (), which is then paired with the function

~n n )\nfl
8T (n ) = o857 (/1= o) — A
1 -1yl

in place of zzz (y,\), and where we can take Z € N to be a large positive integer depending only on n.
Now we proceed by treating the integral

.
|| 25, 00 0 dyia
(0,00) JRn—1 Pr

as in the previous case where £k < 0 and d > 0, but with the new amplitudes @}] and pairing functions
8)?1/)3 (y, A\) as above. The end result that we will obtain below is the estimate,

(6.18) Bl (F:9)] S27927 | f Nl for k20,420,

for some ¢ > 0.
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Indeed, we apply Theorem 29 to 7~  (y,A\) =P~ . (y,\) + i) (y,A) and first note that
3911¢ WI7¢ Lp?,d)

o\ T eisgn[aid)(X(y),y)]%+>\</>(X(y)7y),\5
— , ) = JE— X ’
mw?«b (v, 1) ( A > |det B (y)] o1 (X ()

and arguing as above, we get

< 274k /TN

B, 0.0 0] (4, 1) dyd

(0,00)

As for the remainder term S){Lln) . (y,y75,A), we again invoke the argument of C. Rios to obtain from (6.16)
o7,
with & = 0 that '

(6.19a) ’<%(1)¢(y7)\ h’}z>‘ /’m“ AR (€) ‘d§< Hm

@17
< 27T 2) k2 T /1T] < 274 2R /T,

where we have discarded the small factor 224,

s

b

70| e

6.4.1. The square function estimates. From above, we have the estimate,

<2 9" o kZ /T 1]

1)

(0,00)

Now we apply the square function arguments to obtain (6.18) for some § > 0 by choosing Z sufficiently large
depending on n. Indeed, following the argument in the above subsection, we have

‘B]’iﬁow(f,g)\grd%lg—kZ/ (/ a7 (@) d ) > Jannee)| e
"\ tae Pfid

I (I,J)ept

[N]
=

2
< grdtygkZ / Z (/ ’A” lnf(x)‘dlen(§)> dg§
" \a.epi
2 % i
|/ > |asetof ) e
"\, nepid

= 2_dn7712_kZF1F2.

and ) ;o (1,J)ect? 1 < 2A, which together give,

/

W[ X [aef dmf/ﬂ@m‘ﬁﬂg(x)‘?ydxs“'glgp"

0,0
(I,)ePy JED

by the square function estimate (1.17).
We also have

[NiS]

SR > (/Jﬂ’ﬂ"l”f()‘ ) ,

JE€D, \I1eG[U]: (I,J)ePl?
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and since k > 0, we obtain that # {J €Dy: (I,J) € P(]f’d} < 27Fn which yields

@ 5 o 5 (efrems waen i (i ol )
< gkng—kngdn Z |I|p_1< / ‘ A 1n ‘ dz>2
gt z

(I/ A ‘ dﬂﬁ) 17 (2)dz 2" | fllL,

just as before, by the square function estimate (1.17), provided p > %
Altogether then we have

o[ 5

Ieg(U]

’Bbelow f’ )’ S27 di? kZF F2<2 ( )2 kZHf”LP g”LP 3

which implies (6.18) with

5Emin{n_1—n,Z}>0,
2 p

and Z > 1. Finally, summing in k,d > 0, we obtain

k,d — —
SN [Bl (£ 9) < 20272 U gl S 1S g

k>0d>0 k>0d>0

n

provided p > ~

6.5. Wrapup. Combining the estimates from all four subsections above yields the desired bound,

2n
Betow (£, ) S 1 fllo lgllper o P> 7,
n—
in fact the stronger bound (6.1).

" was used only in bounding the below form for large d. We will

Remark 41. The strict inequality p > -
also use p > = for probabilistic control of the disjoint form, but only p > 1 for controlling the above form

Babove (f5 9), to whzch we turn next.

7. CONTROL OF THE above FORM

Next we control the above form,

Babove (f7 = Z <Th?,.€1 M hf} Z> )
(I,J)eER

where
R={(,J)eGU] xD:®(I) C mean (Cpseudo)} -

For this form, we will use the pigeonholed parameter k = log, ¢ (J) already used in the below subforms,
together with a new parameter r = log, Z(Z‘("}‘SJ) , measuring the ratio of the side lengths of I and 7¢,,J. Note
that for fixed k and 7, and a fixed cube I € G, there is at most a bounded number of cubes J € D satisfying
the pigeonholed properties £(J) = 2* and Z(ZE"BJ) = 2" such that (I,J) € R. This fact dictates that we
arrange our square function decompositions relative to the cubes I in the grid G (rather than to cubes J in
D as as in Bpelow (f, g)) in the arguments below.

To achieve geometric decay in both of these parameters, we will use the high order moment vanishing
principle of decay for the Alpert wavelets h?;l’" in S for decay in r, an integration by parts in the radial
Fourier variable for decay in k > 0, and the high order moment vanishing principle of decay for the Alpert

wavelets A} for decay in k < 0. The stationary phase estimate in Theorem 29 is not needed for the form
Babove (fa g)-
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In fact we will prove the stronger result that the sublinear form

|Babove| (f7 g) = Z ‘<TShTIl;;1,777 h"’}:z>

(I,J)ER
satisfies
< 2n
(7.1) [Babovel (£,9) S IFllze llgll o, forp> .
Here is the decomposition of R we will use:
(7.2) R = U U RP", where for all k € Z and r € N,

keZ r=1
RET={(1,7) e R:€(J) =2F, and { (eand) = 27 (1)}

First we reduce matters to consideration of cubes J that are disjoint from a large cube [72M oM ] " centered
at the origin, which will permit the manipulations used below.

7.1. Reduction to far away dyadic cubes. We now dispense with the first set of trivial pairs (I, J) € R,
namely those for which J C [—QM , QM]n for some fixed large positive integer M. This can be achieved by
splitting the function ¢ into

9= 1[_om ompng + Igny\[—om ompng = g1 + G2,
and noting that
KT g0 S Wl gl S M F Il 2Y Ngall s 1 <p < oo
Then we may assume that g is supported outside [—2,2M] and it follows that A0 f = (f,h'.,.) b7
vanishes for J C [—2M,2M]n.
Next we deal with the slightly less trivial case of dyadic cubes J that have the origin as one of their vertices.

These cubes are contained in 2" towers of dyadic cubes, and we will derive here the bound corresponding to
the tower {J;},,; where Jj, = [0, 2’“}”, the other cases being similar. First we note that

1 N ,
( —e, - (’“)5) e” ™8 = 7€ for all N,

—thn

and so integrating by parts IV times gives,

(Tf,AT"g) = / f(z2)e " don_y (2) A7 g (€) d€
n Jo(S)

/1>(3) {/Rn e~ FERTT (€) <g,hf},’:’>d§} don_1 (2)
- iy s o) (2) s

) V(L) rwe

(T 850 < Y 1oy / (
k=N

0(J
1\ & n,n =N — 1 -

< (n) ]§|<9,th M) E NIl = (,7> ||f||L1/ Z( |ﬁ> T) " Lo (2) dz
1 N o nn 0 _oN 3

< <n> IIfIILl/Rn I§V<|<97h m) (2) (l;vﬁ(h) 1Jk(z)> dz
1 N 3] | nn |2 7 e _aN H %
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Thus we obtain
[o'e) 1 N 1 N
> |(zsr,252.0)] < oy (5) Wrlarlollar < G () Mol ol 1< <
k=N

using the equivalence (2.1) of square function norms on g, together with the finiteness of the final factor if
N is chosen sufficiently large. Indeed, |\g|;, =~ ||Sg||»» where

’

Iosly = / (i ‘Agzzg (z)‘2>2d22/ (i (<97h322>h332 (z))2>2dz
over " \Jep
(o) Y o) < (o) Y
= /Rn Jze;<<97h.f;2> m) 1;,(2) dz:/Rn ;Tlh () |

and for N > % we have,

/ <Z£<Jk>‘”1uk>n (z)) dz = / (Z 27V g0 04y <z>> dz 5 / (14 1272Y) a2 < o0,
n k:N n n

Definition 42. Set
R, = {(I,J)eR:Jﬁ[fQNJN]":@}

(NS}
WIS

_ {(1, J)€GIUI X D: @ (I) C Toan (Cpsendod) and J N [=2V 2N]" = @} ,
and with RE" as in (7.2),
(7.3) REr

RT Urim.
k

{7 e R a0 [-2¥,28])" =0},

Assumption: It is understood from now on that all of the cubes J € R considered below in this
section satisfy J N [-2V, 2N]n =0,ie (I,J) € R

7.2. Pigeonholed subforms. Using the moment vanishing of the smooth wavelets h?;l’" , we first show

the preliminary estimate that for all » € N,

(7.4) (T )

So consider the case (I,J) € R., r > 1. Using (4.11) and (4.12), with ¢; denoting the center of I, we have
(rhgnmgy = [ e @) ety 6 de

/ e—i‘I’(Cz)'th;Z (€) {/ 1 e—i[‘I’(ﬂi)—‘P(Cz)]-th;lxﬂ (z) dx} d¢
n Rn—

k—1 . 4
, —i£ - [@ (z) — P
[ emeramng [ | EEROZ2O L g e o) - o)
n ’ Rn—1 0 4l
In order to apply the moment vanishing properties of h?;;l’", we need to express @ () by Taylor’s formula
as well,

SO (NI, forall (I,J) € RL when r > 1.

hE b (@) dm} de.

o~

I
—_

K 4
() = W@(q)—i—l} (x —er),

~
Il
o
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and then plug this expression into the previous Taylor formula. The result is that all the terms with a
polynomial in z of order less than x vanish, and we are left with

a5 (o) = [ emersnnol [ reont @i a
= [ emern© [ Ircie @ - oDt e dg
w e [ el @ e b de
n Rn—l

where

(7.6) T(&,x) = Ry (—i€ - [® (z) — @ (cs)]) + T (& — 1)

consists of the remainder term R, and a collection of error expressions in I'y (§,x). Because |z —¢;| <
|® (x) — @ (cr)|, these error expressions satisfy the same pointwise bounds as the original remainder term

R, (—i& - [® (z) — @ (c1)])- Recalling from (4.12) that the remainder term R, satisfies | R, (ib)] < %, and
taking absolute values inside the integral, we obtain,

(7.7) (T msn) | < (dist (0,.7) £(1) sin )" VT,

where 0 is the angle between ¢ and @ (z) — ®(¢;). In the case at hand where (I,J) € R., we have

0 ~ L (TpanJ) = %, and so

()| < (a6 i) VI~ e ey VT for (1) €L

which proves the preliminary estimate (7.4).
The case k < 0 will be handled by this last estimate alone, since for (I,J) € R, it yields

t(1)

. n—ln pnn < kRl _ -7 r < 97TK —|k|k <
(7.8) (TR S € (rand) (ame)) OV < 272 WIs for k< 0,

upon discarding the small factor ¢ (myanJ)".

To handle the case k > 0, we introduce the radial integration by parts principle of decay, that will deliver
geometric gain in k. First we observe that (I,J) € R, implies I C mgan (Cpseudod), and so for v = mgncy
and for € myan (Cpseudod ) We have

v -®(z)>c>0,

and
1 N .
(_Z‘,MV . ag) e_zq)(w){ = e_w{ fOI' all N.
Integrating by parts IV times then gives,
(7.9) (Tny i myn) = / /R e Sy () de

- / {/ e”'ﬁhﬁ’"g@)df}h?x’"dw
Rn— n

oA et ar @) () e,

and then we have the second preliminary estimate,

<[ (o) VII(2) [ @] de = e VT

We must now combine these two preliminary estimates in the case k > 0. As usual, to achieve this we
iterate the two associated formulas (7.5) and (7.9) before taking absolute values inside the resulting integral.

(7.10) ‘<Th?;;1’", hf};z>
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Thus we write,

1 N
n—1,n 0 N —i®(x)-§ n,n n—1,n
<Th’l;ﬁ h > i \/Rn_l {/n (V 2 ) hJ;n (§)df} <V‘I’(l‘)) hI;n (1’) dz
. , 1 N
— —id(cr)-€ —i[®(z)—=®(cr)]-£ 1 L9 N e
/n © {/Rnl € hI;N (x) (V . @ (LU)) dx} (V 86) hJ;H (5) dg

—i(er)-€ n—1, 1 \Y N o
= /Rn e 1)°S /Rn_l r (é-vx) h’[;n ’ (if) (V(I)(;I;)> dx (V . a.f) hJ;k; (5) df,

[(&2) = Ry (—i€ - [@ () = @ (cr)]) + T (z = er)

is as in (7.6) above, and I' (¢, x) satisfies the estimates given there. Now we take absolute values inside the

integral, and using the estimates developed above, we obtain the following inequality for k£ > 0,
(7.11)

(gt )

where

S e )Y VTS (i) e 5 e =20 L

tan

Combining (7.8) and (7.11) gives

< g-rwg-lklmin{x,N=2x} /TTTTT

and with this estimate in hand, we will now prove that for all N > 2k and r € N,

(7.12) (T )

n— n —r(k—25%) 5—|k| min{x,N -2k
(7.13) S (TaRt g ag)| s 2Tt g MmN 2 gy lg)
(I,J)erk"

where RY" is defined in (7.3). Indeed, we have from (7.12) that

> ‘<TA’;H1’"f,AMg>‘ Z g=rrg=Ik|min{x,N—2r} (/ ‘A ’”fD (/ ‘A’}’Zg
I

(I, )erk™ yeRET

— 9~ThR9— |k| min{x,N—2k} / (/ ‘An ng
- J;
J) Rk s "

)

) A7 @) do

. 2
< 27’!’}{27“(5‘ min{x,N—2x} / (/ ’Ag Z > Z ’A?;;Lnf (IE)‘ dr
BN o, J)eR’“ r (I,NeERL™
/ o
2\ = . 5
< 2—rﬁ2—\k\ min{x,N—2x} / Z </ ‘A?,Zg > dz / Z ‘An 1,77f( )

(I, )eRE™ (I,J)eRET

where the square function estimate (2.1) shows that

(NS}
S =

/Rn > |antrr@f ) dw | <ifl..

(I,)ery™

=
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since for each I € G, there is at most one cube J € D such that (I,.J) € RE". On the other hand, for each
fixed .J € D, the number of cubes I € G such that (I,J) € R¥" is approximately 2""~1)_ and so

> [rapt o)

(I,J)erk"

A

277‘&27“(7‘ min{x,N—2x} / 27"(77,71) / ‘A g
n Z 7, Jik

JeD

r 27 (e gk minte N2 g £
for 1 < p < oo by the square function estimate (1.17) again.

7.2.1. The enlarged form. For k > 0 define
EFr={(I,7)€GU) x Dy : £(J) =2, £ (mand) =27€(I), and I C Cpseudo2"Tiand }

and define the enlarged form,

Boarse (1) =33 3 (T A £,.0509).

k=0r= O(I,J)Eff T

|2k7rtanJ|

Then for each fixed J € D, the number of cubes I € G such that (I,J) € el is approximately =

2k(n71)‘ﬂ.tanJ| _ 2(r+k)(n71)

2 D rean ] , and so we have

Z ‘< A?nlnf’AJng>‘

(LJ)erk™
, 1
P p’
2 2
< 2—r52—|k\ min{x,N—2x} / Z 2(r+k)(n—1) (/ ‘AT} ng ) dx ”fHLP
~ K
" \Jep In
R A e A P TP
for 1 < p < co by the square function estimate (1.17) again.
7.3. Wrapup. Finally,
gives,
-1,
S T a1 1 8509)| S 1l gl
(I,J)ER.
Combined with the reduction in the first subsection, we obtain the desired bound,
|Babove (f?g)| S Hf”Lp ||g||LP’ ) I <p<oo,

in fact the stronger bound (7.1).

Remark 43. The only restriction on p here is 1 < p < 0o, and so the above form Banove (f,9) is bounded
forall 1 < p < oo.

8. CONTROL OF THE upper disjoint AND upper distal FORMS

The principle of stationary phase is not used for the disjoint or distal subforms, as the critical point of the
phase now lies outside the support of the amplitude. When & > 0 we must introduce the radial integration by
parts principle of decay to bound the subforms, while in the case k < 0, we must use the high order vanishing
moments of A’} Just as in the case of the below form Bpeiow, combining the appropriate formulas, and
staying the 1ntroduct10n of absolute values until the very end, will yield the desired inequalities. There
is however a crucial difference between the cases d > 0 and d < 0 in the case of both disjoint subforms
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Bglgjgfm (f,9) and distal subforms Bﬁi‘:tal (f,9), and we will treat the upper and lower cases in separate
subsections, as the resonant lower forms with d < 0 require probability and interpolation techniques.

In fact, when d > 0, the standard principles of decay apply to give the required control. However, as d
becomes increasingly negative, resonance begins to set in more strongly, and by the time d = —m, none of the
standard principles of decay are any longer of use. Instead we must invoke classical methods of estimating >
and L* bounds, but using probability in order to obtain improved bounds for functions restricted to smooth
Alpert pseudoprojections.

Recall that
glgjgzlnt (f,9) Z <T A?;»_ilﬂ f, AT} Zg>

(1,J)ePh
where P:d = {(1, J) € Py s £(J) = 2%, and 27 < £ (1) dist (0, .J) < 2d+1} ,
and P, = {(I,J)€G[U]xD:2" 1 C S and myan (J) C @ (27 Cpsendol) \ @ (2" Cpsendol) }

and that the parameters (k,d, m) run over
1
keZ, meN, and —10g2m§d<oo.

We then decompose the disjoint form into upper and lower components determined by d nonnegative and
negative respectively,

(8.1)  Baisjoint (f9) Bﬁﬂﬁffm (f,9) + Bohe (£,9)

k d 1 — k d
(lili?(flrnt (fa ) Z Z dle(Tnt f’ g) and Bd%:g?)rint (f7g) = Z dlsj(zlnt fa ) :
m=1k

m=1keZd>0 1 ke€Z d<0

For the distal form we write,

Bfllbdtdl (f7 g)

Z < A?le AN K9>

(I,J)exkd
where AP = {(1, J)e X 0(J) =2 and 2¢ < ¢ (1) dist (0, J) < 2d+1} :
and ¥ = {(I,J)€G[U]xD:2" 1 C S and may (J) N @ (2U) = 0},
and decompose it into upper and lower subforms in the analogous way,
(8.2) Baistal (f,9) = Baigra (/19) + g’l?tirl (f,9),
Biltal (f:9) = DD Baiha (f:9) and BE (£.9) = 3D Bl (f,
kEZ d>0 keZ d<0

8.1. Upper disjoint subforms with d > 0. When k£ = 0, we obtain geometric gain simultaneously in
m > 1 and d > 0 using the tangential integration by parts principle of decay. In order to handle arbitrary
k € Z, we must include additional principles of decay combined with tangential integration by parts. For
k > 0, we include radial integration by parts, and taking absolute values inside the integral at the very end,
we will obtain below that,

(83) (T 7wy )| S 2k Natmtd T,

For k < 0, we include instead the moment vanishing properties of A7, and taking absolute values inside
the integral at the very end, we will obtain below that,

(3.4) (T )| s 2 g Nt T,

With these estimates in hand, together with the square function arguments used repeatedly above, we

obtain,
et 1] 52t (flagod]) (f ozl w22

17
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for some & > 0 provided k, N7 and N are chosen sufficiently large, and finally then,

2n
kd
ZZZ‘ dlsyzlnt <Hf||Lp ”g”Lp ) fOYpZn_1~

kEZ d>0m=1

Here is a brief sketch of the two inner product estimates mentioned above, followed by the appropriate
square function estimate.

8.1.1. The case k > 0,d > 0. Combining the radial integration by parts formula (4.8),

n—1n n 7] 1)\¢(I v) Ny
<Th1& hJH //]R" . /]R" ) ¢ (l‘) a)\ ¢J (ya A) dmdyd)‘v

with the tangential integration by parts formula (4.20)7

- . 1 N ~n dX
TRy Ry = N / / / e @y) <D5 ) T (x ) dedy —
< I;ik J,n> & Jrn-1 Jra—1 (qu)) ({,13) ) (y) Pr ( )77[}J (y ) y/\N2

gives
N2
n—1,n nn _ 1)\¢x ) T n o dA
() = [ [ {<D THEEw) }*”f(x)‘/”(y’”dwdyw

L {< z(Dv@(i)-@(y))M} oo

}< oy and (4.22),

~

Taking absolute values inside the integral, and using (4.9) together with min { ST X

we obtain,

(8.5) )<Th}‘;;1”7, h’};z>

< 27 kMg Nl /7T,

as required.

8.1.2. The case k <0,d > 0. This time we use (4.20),

_ o : 1 N ~n dX
ThY 51 By — N / / / e Ae(@y) (Dz ) " (z ) dedy—,
< Iik J,Ii> T — (qu)) (x)(p(y) (pI( )wJ (y ) yAN

together with (4.14),

(THE By = / e R () { [ Ra (=i (@) (€= ) WL ©) ds} de

to obtain,

N
n—1m pn. o= iro(a) 1 7 ()" ar
<Th R " //R /R B v {( (Dv@)(x)@(y)> }@}(l’)wJ(y,A)dxdy)\N

1 M o)
= —1 N efi{)(z)f zc__ - n—1,m 2) de
e (D”wvcb)(x»f) R

N
SR ;N (Diw cp)l(a:) e) R (=i (2) - (6 = e) B (@) | da g 20 (€) e,
n n—1 v m

where in the second line above, we have reversed the change of variable in (3.6). Now from the estimates
used in (4.22) and (4.15) we obtain,

(Tt )| < 2 e N e 77 7],

as required.
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8.1.3. The square function argument for d > 0. We follow the square function argument used for the below
form Bﬁﬁow (f,g) when k > 0,d < 0. The only difference is that we now accumulate a factor of a large power
of 2™ depending on n and p, but this will be offset by gains from integration by parts in both parameters m
and d - and this uses in a crucial way that d > 0. We begin by writing the sum over (I,.J) € PF? as,

> = > :
(I,NePR?  (I,J)EGIUIXD: 2™ THICU and mean(J)C®(2™T1CT)\®(2™CT)
2(J)=2% and 2¢<¢(1)? dist(0,J) <29+

and
Bidn o= > (Taptrranie s Y [(Tarl el
()P (1.0)ePk"
S Y arlksg-Namra) (/‘An 1,nf‘> (/\Amg)
(I,J)ePr?
gty [ ST ([ fagng o) 10| a320 0|
" aeplt MR
’ 2
SR S (W“)/ A (“””)‘dx> L 3 2me[ane)
"\ @erhs o (1,1)ePk*

which gives

(NS
10

2
Bt (fo)| 5 2 | [0S (2"“” V[ gt )a > )] e
(I,J)ePl®
— 1) n,n 2 N
X / S gmins ‘A g 5)) de

(I,7)ePk

= 2—\k\f€2—N2(ﬂl+d)Flr2 )

We first consider I'y which satisfies,

’

5 g
, 2 , 2\ ? "
N4 :/’ 3 2—m<n—1)‘A3;gg(g)‘ d§§/ (Z \A};Zg(f)\ ) ¢ = g},

(1,0)ePy? JeD
since for a fixed J with £ (J) = 2%, the number of cubes I such that

m—+1 m—+1 m—1
(I,J)eP,’;’d={(LJ)eg[U]xp 2 C U and man (J) € @ (2771C1) \ @ (2 CI)}

and £ (J) = 2% and 2¢ < ¢(1)* dist (0, J) < 291

is roughly 2™("»=1) and where the final approximation is the square function estimate (1.17).
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Now we turn to I'y for which we have the estimate,

P
2

2
/ D e (/ ‘A?ml’”f(w)\dw> 1,(6) | de

(1,0)ePh?

I

ya
2

_ 2pm<n71>/n 3 3 (/ ’A?,}"f ‘ ) 7 (&) ] d¢

JEDk 1€G[U): (1,J)EP

_ mem-n/Rl 3 (/ A5 (@) d )2 21J<s)d£

" JeDr \seg(U): (IJ

2\ %
= opm(n—1)gkn Z Z (/ ‘A?;,{l’"f(x)’d:c> )
I

JEDL \I1eg[U]: (I,J)ePk?

Now for each J € Dy, the number of cubes I € G [U] with (I,J) € P%4 is approximately 2™", and so we
compute that,

vl

2

2 p
Z (/ ‘An 1nf( )’ ) < Z 1 Z (/ ‘A" 171f( )’ )
1€G[UL: (1,0)ePkt N7 I€G(U): (1,7)ePn* 1egU: (1.0l N
p
~ an(g—l) </ ‘An 1 7/ ‘ l‘)

IegU]: (I J)e

and hence that

2\ %
rp g 2ok 37 > ( / )A?;?’"f(w)‘dm)
JEDk \1eG[U]: (I.1)epl \" 1"
S 2p'rn(n—1)2kn Z 2mn(%71) (/ ‘A?Hlmf ’ )
J€Dx IegU]: (I, J)EPkd
P
9 3
< 2m[p(n—1)+n(§—1)]2kn I z / ‘An'—l,nf z ‘ da
> ox (] e

JE€Dk 1eg[U): (I1,7)ePk*

p
2

Qm[%pnf(lwn)bkn Z Z 1 |I|p<|[ |/ ‘ A 17] ’ dx) ’

I1€GlU] \JeDy: (I,J)ePk?

%

where by the extension of (6.6) to m > 1,

ntl
1

n—1
Z 1~ 2m(n71)27kn |ICd (I)‘ ~ Qm(’nfl)Q*kn2dn <I> .
JEDy: (I1,J)ePk?
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Thus we have

1
1—\11) 5 2m[%pn7(p+n)]2kn2m(n—1)2—kn2dn Z <) ( / ‘ AP 1,77 )
2= T ]
5
_ m|2pn—(p+1)|9dn p—2ti-1 AT 17]
= oml3 Jodn ™ i <1/‘ ) 17 (z)dzx
Ieg[U]
%
< 2m[%pn—(p+1)]2dn/ ( /‘ AP~ 17] (.TJ)) dz,
ot 2\ 1T
if p > =%, and then using p > 2 and the Fefferman Stein vector valued inequality, we can continue with
P
2
P < gmlien(rD)]gdn / 3 <M’A?m1’"f‘ )(z) dz
n—1 Ieg[U]

2
grlim-tetlyin [ S apng @] de gl g,
" Ieg[U]

A

Altogether then we have
Bt (frg)| 5 27lHngrNatmtdpypy g 9-ng-NalmtdgmBon—(rD]gdn | £ lg]|

disjoint ~

— —\k|n2—(N2—%pn+(p+1))m2—(N2—n)d2dn Hf”LP ||9||Lp’ < 9=lklsg—dmo—dd ”fHLP HgHLP’

)

for d >0 and p > -2 =, S0
o0
kd k|6do—0 od
T3S [ (o] S T30 3 2 e gl 1 gl
k€Z d=0m=1 k€Z d=0m=1

8.2. Upper distal subforms with d > 0. We can obtain similar estimates for the upper distal form, by
treating this form as the sum over pairs (7,J) with J in the ‘missing sector’, i.e. by setting m = s in the
corresponding disjoint form estimates, as we now do. Indeed, recall that in (8.3) and (8.4) above we showed
that

‘<Th?;;1717; h7}32>‘ 5 2—\k\ mm{Nl,n}2—N2(m+d) |]| |J|7

for (I,J) € P4 k € N and d > 0. The same arguments, when applied to (I, J) € X% yield

(T, )| 2 miniv g =N+ T[] 5 27 MM 2=Na T[],

for (I,.J) € X% k € Nand d > 0. Then the square function argument in the previous subsubsection applies

to give
ZZ\BM 1.9 \NZZ2 2 fll gl S 15z gl

k€EZ d=0 k€EZ d=0
for some 6 > 0.

8.3. Wrapup. If we define

(fr9) = i > (T ot 187509

1(1,0)€P,,: £(1)? dist(0,J)>1

> (T apt r.0%00).

(I,J)ex: £(I)? dist(0,J)>1

upper
‘ Bdls_]omt

[Baictal | (f+9)

in which the absolute values are taken inside the sums, we have proved both

2n
(f,9) S flleellgllper s forp>—

-1’

upper
Bdmjomt

(8.6)
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and

u er 277’
(87) |Bd?s$a1 (fa g) 5 Hf”Lp ”g”Lp’ ’ for D>

n—1

9. CONTROL OF THE lower disjoint AND lower distal FORMS

Momentarily fix s € N. Let {Di}ij\il be the set of dyadic cubes of side length 2251 such that 0 € 3D;.

Then M < C,, and
M

B(0,2*) c D, = | Ds.
i=1
In this section we bundle the lower disjoint and distal forms together, and control their sum by bounding

the form
oo

B (f.9) = Y B (f,9),

s=1
where

,J)EG[U]xD2s[Di]

The form B'°"" (f, g) turns out to include more pairs (1, J) than occur in the sum Bldci‘;‘giﬁm (f, 9)+Blver (£, ),

but the resulting overcounting is inconsequential because the sum of the moduli ‘<T A?;l’" AT Zg>‘ of

the inner products for the overcounted pairs has already been controlled without using probability. We fix
D € {D;}, for the moment and consider just the form

=Y Y (raptrsi).
i=1 (I,J)€Gs[U]xD2s[D]

where for convenience we assume that B (0 225) CD.
Now we decompose the collection of pairs (I, J) arising in Blower (f,9) by

gs[U]XDZS[D]:U Uﬁs,w,m
w=0r=0
Lor = {(I,J)€G U xDa[D]: J CTI ]}, 0<r<s,
Lowr = {(I,J)€G, Ul xDys[D]:JCPL,IF}, 0<r<w<s,

where T/ [r] and P/, [r] are tubes and pipes respectively, that are defined in the subsections below. Then
we will control the corresponding subforms,

B (fg) = Y. (T f.A%0)
(IJ)ELs,,
LOXB;D(f7 ) = Z <TA?n1nf7AJﬂg> )
(I ))ELoru,r

and add in the parameters r and w to control the lower form

(9-1) BY™ (£,9) ZZ{B‘;:Y% )+ Y Bl (7 }

=1 r=0 w=0
by

(9:2) Eg [l

PN —epn
((AaQ?J) [5Pas [D] 9)‘ S 27 N fll ooy N9l o () -
Now let x be a smooth bump function that is 1 on D and supported in U, so that

X9 = P2, [Q g + xG,
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where G is a polynomial of degree at most & and ||G|| . ~ |Gl () < 19l 1+ (@)- Using the smoothness of
xG, together with integrations by part as above, one easily verifies that

BY, 1y B (4aQi)* £.0G) | S 277 1l oo 9o o) -
which together with (9.2) gives

BY, o B ((AaQi)* £:x9) | S 275 11l ooy N9l o )

It still remains to prove the norm estimate,

%
( o [T At ]| (D)) S 27 |l oo

Before turning to the details of these estimates, we discuss the problematic resonance that plagues the
lower form Bl°"er (f, g).

9.1. Resonance in the lower form. Note that for fixed £ € R™, the wavelength of the oscillation of the
function z — e ~*®(®#)¢ is roughly = T~ Uk while the depth of the patch of the sphere ® (I) in the direction

2d )
toward £ is roughly ¢ (I)sin6 ~ 2™¢ (I)*>. Thus we will have oscillation along the patch ® (I) if and only if
the wavelength E(Zld) is less than the depth 2™¢ (I)?, i.e. m > |d|, while we will have smoothness along the
patch if and only if m < |d|.
On the other hand, for £ € J, the wavelength of the oscillation of the function & — e~*®®)¢ is roughly
~ 1 (unless the unit vectors ‘Zi i and @ (cy) are nearly orthogonal), while the depth of the cube

1
cos £ (®(z),cy)
in the diretion of ¢ is roughly ¢ (J) = 2¥. Thus we will have oscillation along the cube J if and only if the
wavelength 1 is less than the depth 2%, i.e. k> 0, while we will have smoothness along the cube if and only
if £ <0.

Conclusion 44. The most problematic case occurs when d < 0 and both m = |d| and k =~ 0.

We begin by illustrating our approach to controlling resonance in the most problematic of the subcases
in the next subsection, and it is here that we require the use of probability and an interpolation argument.
In such instances where we need to use expectation over ‘martingale transforms’, we will also need to apply
this expectation to norms rather than bilinear forms, which must be addressed.

In order to handle cases with partial resonance in the subsequent subsection, we introduce a different
decomposition of the disjoint form into resonant pipes that respects resonance when d < 0, and then apply
principles of decay along with probability and the interpolation argument to control these remaining subcases.

But first we look at the extreme resonant case and show how expectation plays a role in controlling this
simple case before tackling the general case. We will also show why the annular cone decomposition used in
P, must be replaced by a pipe decomposition, namely because pipes respect resonance while sectors do not.

9.1.1. The extreme resonant case. The most resonant of the disjoint subforms is BX:4™ (£, g) = BE """ (f,g)

disjoint dlSJOlIlt
when ¢(J) =1 and d = —m. Fix (I,J) € P%~™ and let J™ _[I] be any dyadic cube in D satisfying the
following conditions,

. 1
(9.3) tUnax 1) = 77 1
dist (0. I 1)~ .
t(I)
Toan T (1] C 27T\ 2771,
¢ (Wtan‘];rrllax [I]) = 2™ (I) )

where € (Tean I

follows from (9.3) and £ (mianJ2 . [I]) S 1), then we have

max

[I]) denotes the diameter of the quasicube oy Ji . [I]. If £(I) = 27° with s > m (which

() =2, dist (0. 1) = g s —omee

(1)) = 2%~ ™ 0 (mpan ™

max
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At this point we note that the cubes JI _[I] are essentially the maximal dyadic cubes that fit inside the

annular conic region given by (9.3), and hence there are roughly diif((;);;] ‘%‘]gﬂ) ~ 22;:"

max

~ 257™ guch cubes

stacked away from the origin. We enumerate these cubes by {Ju% [T ]}fislim and let

c25™m

(9.4) g = | gt

denote their union. Thus J7%* [I] is a quasirectangle of ‘length’ roughly dist (0, J™ _[I]) ~ 22°~™, and ‘width’

max max
roughly 2° - we say ‘quasi’ because JI4% [I] is a union of dyadic cubes J":! [I] staggered in the direction

max max

of the annular conic region. Note that there are at most C,, such quasirectangles J7.* [I] associated to any
given cube I € G [S].

Remark 45. Since quasirectangles do not respect resonance (which varies along the quasirectangle), they
will not play a part in the proof going forward, but will instead be replaced by pipes in the next subsection.

Ifop=4« (chlax[I] —®(cr),® (C])L) is the angle between the vector c¢;m (7 — @ (cs) and the unit vector

®(cr), and if § = £ <m7©(cl)> is the angle between the unit vectors 28l and & (¢;), then

€Tl ]

0 ~2™¢(I) and we have o
m
05) T-0 = Llesn-oler). o)

Cygm [T Cm 11
- 4 (CJ;:;X[I] _ Yl g (c;)) + £ (CJ;’,QX[I] =@ (cr), e — mx”)

|eam |’ |cam 1]

max max

oo - s

Cym 1] lesm 1 m 2m¢ (1)
= L| 2= P (c +0 ~2"M(I) +
<|CJ;§M[I]’ ( I)> lcsm 11— @ (cr)] ) dist (0, Jy. [1])
_ m 1 ~ Oom m—2s\ ~, om
= 2 “I){Hdist(o,max[l])}’“2 ((I){1+2 Pa2me(I),

since s > m. Thus it follows that there is neither oscillation nor smoothness of the inner product

(ragrogasna)= [ L] (rmtn) i@ e ik g g6 de

in the integral over I in braces, since the ‘tilted depth’ of ® (1) in the direction § — ¢ is given by

tilted depth & £ (I) cos ¢ = ¢ (I) sin (g - qS) ~ 2m¢ (1)?,

and so
1

dist (0, 7 [1])

? “max

(9.6) wavelength ~ = 20 (I)? ~ tilted depth .
Of course there is neither oscillation nor smoothness in the integral over J either since ¢ (J) = 1 and the
wavelength coming from the sphere is approximately ¢ (J) = 1 as well.

Then (I,J) € P%~™ essentially if and only if J C J™* [I] and £ (J) = 1. There are roughly ﬁ cubes
J C Jmt (1] of side length 1 for each 1 < ¢ < ¢257™, and we may restrict our attention to the cubes I having

side length 27° with s > m, that are contained in a cube @) where
(9.7 Q C S with £(Q) = 2™~*, such that JJu% [I] ~ J% [I'] for all such cubes I C Q.

We also then set
(9-8) Q = J Jma i),
IcQ
which is approximately equal to any of the J".* [I] taken individually, and thus Q* is a quasirectangle of

max

length roughly 22~™ and width roughly 2°. Thus we have defined cube / quasirectangle pairs (Q, Q*)
which we now analyze a bit further. Recall from (9.3) that ¢ (74anQ*) = 2™¢ (I) = 2™ 5.
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We write

(9.9) Qg = Z A7 tg and PR g = Z Ay,
1eQg, JCQ*: £(J)=1

and recalling that (.AaQEQ)* = (_AaQsQ)Sm = Sk AaQ) (SH7,,)_1 is the conjugation of AaQf) by Sy, we
claim that

oo

910) B |3 3 S (T(AQe)* £PE0)| = D03 Sk (7 (4Q0)* P )]
Q

m=1s=m m=1s=m Q

S WAl llgllpe > 2=

where we recall that the parameters k and d are fixed at kK = 0 and d = —m. It is here in (9.10) that
our argument requires averaging over all involutive smooth Alpert multipliers on the left hand side of the
inequality. Note that we have replaced the large projection Qg with the smaller projections Qg, for @ C S.

9.1.2. The interpolation argument. In order to illustrate the probabilistic methods in a relatively simple
situation, we first prove (9.10) when the sum is taken only over s = m € N, so that both @ and Q* reduce
to cubes of side length roughly 1. Thus there are only a bounded number of such cube / cube pairs (@, @),
which for convenience we treat as a single pair (Qo, Qf). We claim,

oo

S (T (4.Q5,)* 1. PRSP )

m=1

2n
n—1

(9.11) EX, Sl llgller > 2>

We note that the expectation Ef; will circumvent some of the geometric L* arguments that go back to

Fefferman [Fef] (see also [Bou], [Gut] and [Tao4]). Recall that we are in the case d = —m, and that
Q9= Z A?ng and P?,;O,,?Og = Z Tind,
1CQo: £(I)=2-m JCQy: £(J)=1

where @ is a cube in R"~! centered at the origin with side length approximately 1, and @} is a cube in R"
at distance 2™ from the origin with side length approximately 2™, and such that dist (Qq, Ttan@f) =~ 1. We
will again use p to denote the Fourier transform of ¢. Thus we must estimate the average of the moduli of
the inner products,

o (P R~ (1 X s Y o)

1€G:,[Qo] JCQs: L(J)=1

XX [ et agit @) agtg € deas

I1€Gm[Qo] JCQg: £(J)=1
/ / e Y WA (2) 007 ()dzy Y AYlg(€)dg
" 1€Gm Qo] JCQg: (=1

Fart (€) gm (€) dE,

R

where f/a:p denotes the Fourier transform of f, ¢ as in Section 5, and

gm (&) = S AL =PRI (©)

JCQy: £(J)=1

fan (2) = (AQE)*F(@1 ()00 ()= Y AL (27 (2) 097 (2)
I1€G, Q0]
- ¥ a1<f,h7};;1’">h?;l’"(@‘1(,2))8@_1(2)E S e,
I1€G,[Qo) 1€Gm[Qo]

and where the spherical measure fiq) has mass roughly ‘f([)’ 2—m(n=1) and is supported in S"~ 1.
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The bound (9.11) now follows immediately from Holder’s inequality and Proposition 34, upon noting that
Qg in Proposition 34 is the projection Qg here. Indeed, from Proposition 34 we have

oo o0
I —MEnp,
> B [T (AQE)* 7] 8 D02 Ul
m=1 m=1
and then in particular,
o0 o
W m \® 7,0,Qg w 7,0,Qg5
B Z <T (AaQQ“) £ Pmm Og> = Z oo || T f‘ Lo (Jp H mon ’LP’(W *)
m=1 m=1 m m
= —me, < 2n
< S o o) 190 ) S I gl s where g > 0 for p> 2 m .
m=1

But we can in fact obtain more. Define the smooth Alpert pseudoprojection
(9.13) Prig=Y Y AJ "9,
kEZ JCQy: €(J)=

where of course the restriction J C Qf; means that k& < m in the sum above (contrast this with the restriction
tok=0in P%?ﬁ?o g). Then we have the stronger inequality in which the sum over k is included,

oo

S ey
(914) B | Y (T (AaQ,)* £, PRk )| < ZE fH [Pt ] ,
m=1
= —MEp.n m —1 7,Q0 < 2n
< 32 |[SknAaQE, (Sin) fHLp\PmmgHm/anumugumf7 p> = meN.
m=1

Remark 46. There is no direct use here of square function estimates to add in the parameter m. Instead,
we use expectation, geometric decay, and the boundedness of connected smooth Alpert pseudoprojections on
LP - a pseudoprojection is connected if the cubes are summed over a connected set in the grid. This feature
will persist in summing over the additional parameters s and d below.

9.2. The resonant pipe decomposition. We now abandon the decomposition into annular cones para-
meterized by m, and distances parameterized by d, since this decomposition does not respect resonance in
the inner products. Instead, we will use (9.1) to decompose the lower form as

Blower f, Z Z Z {Bio;&ier + Z BiozvueiQ )}

s=1i=1r=0
co M s r
ZZ Z < A?Kl,nf,AJng>+Z Z <A?H1’7f,AJ,{9> ,
s=11i=1r=0 | (I,]J)€Ls w=0(I,J)€Ls w,r
where
Lor = {(I,J)€G[UxDos[Q]: JCT 1]}, 0<r<s,
Lowr = {(I,J)€G Ul xDas[Q: JC Pl [r]}, 0<r<w<s.

Thus for each I € G, [U], we are now decomposing the set of cubes J € Dy [Q] into ‘truncated tubes’ T [r]
and ‘truncated pipes’ P/, [r], instead of the quasirectangles J7%% [I] introduced in (9.4) above, using new
parameters w, r in place of m,d above. The advantage of this new decomposition into pipes is that it does
indeed respect resonance.

In the remainder of this section, we will define the tubes T/ [r] and pipes P!, [r], and prove the associated
subform and norm estimates.

Fix s € N and consider a cube I € G, [U]. Let ul, be the unit outward normal to the sphere at the point
® (¢r), and let (uI)/ = {u{7 ...,ufl_l} be an orthonormal basis for the space (ui)L perpendicular to u?.

We will use the coordinate system {(uI)/ ,ufl} in R™ in connection with the cube I € G, [U], so that as
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I
n

we vary I € G, [U] the coordinate systems {(ul)/ ,u } rotate (Span {ué} and Span (uI)/ are determined

canonically under rotation, but not the individual basis vectors uf,...,ul ).

For convenience in notation, we momentarily suppose without loss of generality that I = Iy € G, [U] is
centered at the origin in S, and consequently we can take {u{, eoul g, ufl} to be the standard orthonormal
basis {e1,...,e,-1,€,} in R", and £ = (&4, ...,&,) = (£,€,) € R™ is the usual representation of a point £ in
R™. Then the pairs (o, J) € G [U] x D for which we have resonance on both sides of the inner product, are
precisely those satisfying ¢ (J) ~ 1 and,

1
1 ——— =~ tilteddepth ~ 27°sinf
(9.15) Bist (0.7) ilted dep sin 6,
. 2° €]
.. ~ =2°== f J.
Le. [¢] <in 0 |£/|7 or § € J,

ie. 271 < ’§’| < 25+ for £ € J,

where 0 is the angle ¢ makes with the positive £,,-axis. Thus the union P! of the J's satisfying £ (J) ~ 1

and (9.15) is essentially the difference of two infinite tubes, namely the (2°*1 x 251 x co)-tube and the

(25_1 x 2571 x oo)—tube that are oriented vertically with infinite length. We refer to Pl as the resonant

2%-pipe for Iy. In terms of the projection ﬂé(cl )J_ of R™ onto the horizontal plane perpendicular to ® (cy, ),
0

we have

pSIo _ {f e R" : dist (CIO,T(—(I)(CIO)L§> = 25} ’

since |£/| ~ dist (clo,ﬂ'(cl )Lf)
0
Truncated pipes and tubes: We also define the truncated pipes
P;’OwEP;OﬁLIII?, 1<w<s,

that are given as the intersection of the infinite pipe P/ and the horizontal slab

L’LIL? = {é— cR": 223—’11)—1 < gn < 225—'[1}}’
that is distance 22~“~1 above the plane ¢,, = 0, and has height roughly 22*=*. We also define the
truncated pipes Pl for —s < w < —1 by reflecting the pipes PSI"_w across the plane &,, = 0, so that
these pipes lie below the ¢, =0. 7
Finally, we define the truncated tubes TSI“Jr = PhNL, where Ly = {¢€R":0<¢, <2°}, and
their reflections T;‘L = —TSI"Zk across the plane ¢, = 0.

We now extend these notions of tubes and pipes to all T € G, [U].

Definition 47. For I € G,[S] and 0 < w < s, define the truncated pipe Ps{w to be the rotation of the pipe
Plo, by any rotation R that takes ® (cg,) to ® (), i.e.

Ps{w = RPSI,QU . {§ cR” - dist (C[O,T(q)(cl)lg) ~ 25}7

where T+ = (crg)*" Similarly we define tubes T! | and T _.

TRa (1,
We will define expanded versions of these tubes and pipes below as needed.

Note that if |£'| > 2% then e *®(*)€ oscillates at least |§

times along the span of ® (I), so that integration
€]
25

by parts is effective, while if |§'| < 2% then e “®@)€ varies by at most
the vanishing moment properties of h7,_ are effective.

along the span of ® (I), so that

Definition 48. Forr > 0 and n > 2, define the n-dimensional annulus A (0,7) = A, (0,7) by
A0, =B(0,m)\B(0.5),

where B (0,7) = By, (0,7) is the ball of radius r > 0 in R™ centered at the origin. Define the upper half ball
B1(0,7) by
B. (0,r) = {£€ B(0,r) €, > 0}.
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and the upper half annulus A4 (0,7) by
AL (01 ={E€ A(0,7): £, >0}

To complete control of the lower disjoint form, in which d < 0, it suffices to prove the following lemma
since

By (0,2%%) = B4 (0,2°) UA+ 227w

We will later establish average control of LP norms mstead of inner products, something that is needed to
complete the proof of Theorem 5.

Lemma 49. Suppose s € N and 0 < w < s. Then

2n

(T5 (AaQi)* P} (0 2000y9)| S 27 Il gl + forp> -2

EM
-1’

26s(U]

where the implied constant is independent of s and w.

To prove the lemma, fix 0 < w < s and a € 29151 and consider the positive expression,

(9.16) Zw=| 2 D / { /R O (Al A7 @3) f(x)dw}A’};Zg@)df.

Ieg.[U] JCPL,

We begin by establishing control of Z2

.SLU’

and then control the sums over cubes J in expanding geometric
annuli away from the truncated pipes P, é ws Py applying decay principles to obtain geometric decay factors.

Finally we apply the arguments used to bound Z3,, to each of these collections of annuli, and then sum up

the annuli to cover all of the upper half annulus A+ (O, 228_“’), which completes the proof of the lemma.
Definition 50. Define the expanded truncated pipes
Pl i ={¢eR:6,£€ P},

where §,.& = (QT C€T§T> is a (slightly nonisotropic) dilation for r € Z, and C,, is chosen sufficiently large.
Thus Pf(;u [r] is a truncated pipe of height roughly C,2%~%*" and width roughly 257" centered at a point
horizontally located away from that of Pi(?w. Then define the rotated expanded truncated pipes P. ., [r] for
I€G,[S], by P!, [r] = RP[, [r] for any rotation R in R™ that takes cy, to c;.

Note that if C,, is chosen sufficiently large in the definition of P/

S,w

half annulus A, (0, 22g_“’) is contained in the union of the tube T/

(r), then for every I € G, [U], the upper
which we recall is the convex hull of

S,w?

the truncated pipe P!, and the expanded truncated pipes PI w 7] for r < w, ie.

S,w?

(9.17) Ay (0,2%7v) c 1), (U ) ,  forall T €G,l[S].

Moreover, the overlap of the truncated pipes PSI w 18 approximately

(# pipes PI ) ( olume of a pipe PI ) (28)”_1 x (Qs)n—l 92s5—w
volume of annulus A, (0,225—w) - (225—w)"

_ 2w(n—1)

which leads to,

a3 Qw(n 5 2. e, (9 Slea v (6
Ieg;[U]

We will need to choose C,, even larger in Subsubsection 9.3 below.

Definition 51. For a € 2951 qnd r > 0, define

019 zil=| XX [ e (aeg)t rwal st

I€G.[U) JCPL ,[7]
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We will now control the average of this sum of inner products, as well as the stronger average norm
estimates, see (9.19) below. First, we consider the two extreme cases w = 0 and w = s, which are easily
handled by two different techniques. Then we combine these two proofs to give a single argument for the
general case.

Definition 52. We define
REY(r)={(I,J) € G, [U] x Dy, : J C PL, [r]}

to be the set of pairs (I,J) € G[U] x D with £ (I) =275, £(J) = 2¥ and J C PL,, (r). When r =0 we write
simply
R =R (0).

For symmetry of notation, we also introduce tubes E) [w] that are essentially the same as the tubes TS{ w-
For I € G, [U] and 0 < w < s, define
j;) [’UJ] = [_23725]n—1 ~ [223711)71,225771)] ~ Tlo

s,w?

and extend this definition to I [w] by rotation , so that I [w] ~ TI,, and T[0] ~ I.

s,w

9.2.1. The case w = 0 (Direct Argument): In the case w = 0, we first consider Z%, with the sequence
a =1 of all 1’s, since the arguments in this subsubsection take absolute values inside anyways, and do not
use probability. The bound for the subform

Zo=|X X3 (Ta5 1 8%)
s=11€Gs[U] jeD: JcT

applies more generally to indicators 1; times f, in place of smooth Alpert pseudoprojections A?;l’n applied
to f, and to 17 in place of 3= ;5. ;-7 A% To see this, we first note that

sl = ([ i) < |if 7 ([ @ra)’

ntl _gn-—l -
= 27027 L fll ey = 27 (L fll Lo ey

n—1 n+1 n—1 n+1 n—1 2n
Epn = —F— — = p—1-— = D — .
P p p n—1 p n—1

Then with s fixed, we continue with

/e_iq’(w)‘ff (z)dx

I

where

=
b~

> (Tif )| < Y T2 f Nl o1y N9l Lo () = > ||T11f||zp(f) > ||9||le/(f)

I€G,[U] I€G,[U) Ieg,[U] I1eg,[U]

s [ 3 2

Ieg;[U]

P

1IfH]ZI’(]R?"‘l) gl (Vreg.wil) <27 | fll o (gn—1y 191l v ey

and finally we sum over s € N to obtain

Z Z <T11f,1fg> < Z Z ‘<T11f7 1f9>} <G, ||f||LP(R"—1) ||g||LP'(R”) )

s=171€eG[U] s=11eg (U]

where

o0
_ 2n
C’nEZQ frnd < oo for p > 1

s=1
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Corollary 53. If we enlarge the cubes I by a factor 2t to I [t] = 211, and if we enlarge the tubes T transversally
(meaning perpendicular to ® (cr)) by a factor of 2" to I[r], then we obtain the estimate,

n—1

p 27 %Cmm ||f||LP(Rn*1) HQHLP'(R") ’

> (Tufip,)| < c2vy
Ieg,[U]

1 RN 1
Proof. Apply the above argument and use (‘I [r]‘ |7 [t]|p_1> s P (’I‘ |I|p_1> " O

We now turn to obtaining the stronger norm estimate for smooth Alpert pseudoprojections,

(9.19) i HT(QSU)* f‘

S22t for s e N
Lr(A4(0,229)) ~ ”fHLp , ,

where integration by parts in the z-variable in the expanded pipes T [r] will compensate for the growth 2
in Corollary 53.

Expanded pipes

Consider an expanded truncated pipe Pf% [r]. For r > 0, we claim that the wavelength on I in the
inner product is much smaller than the diameter 27° of Iy, and so we can use integration by parts to gain
a geometric decay factor of Cy2~ " for all N > 1. Indeed, for ¢ € J with J C PSI,% [r] and 0 < r < s, the
wavelength of the exponential factor e ~*®(*)€ ig roughly ﬁ ~ 2715, and referring to (9.15), we see that the

tilted depth of Iy in the direction &, is roughly £ (I)sin 6, where sin = % = 2;; Altogether then, since

€ B(0,2) N PSIfO [r], we have
r+s 1

tilted depth ~ ¢ (I)sinf 2> 27° o3 = 2T273 = 2" wavelength,

and so the exponential factor e~*®(*)¢€ oscillates at least 2" times as = traverses 1.
Thus

(ragrgssna)= [ L[ e an i @iy oy de
n Rn—l

where for £ € J and J C Ps{% (r), the integral in braces satisfies,
1 N
—i®(z)-£ An—Ln f dr = / (8) —i®(x)-6 An—11 f d
€ ; z)ar - | e . x)dx
/R”*l I ( ) Rn—1 _Zaz (@ ("I}) . g) I; ( )

N
= (=)W —i®(2)€ 1 n—1n
( 1) /]Rn—l € <8$ i’ (.’L’) K §> AI;,‘@ f (‘T) dxv

and hence is dominated in modulus by Cy2~"V [ ‘8N A?;;l’" ! (x)‘ dzx since

1 tilted depth S

- 2r+s £ P[U .
¢ (I) wavelength ™ > ’ or &€ Py (r)

0 (z) - &| =~ |¢| 27t (also ~

In conclusion, for any cube I € G, [S] we have

[ @ty fwas] s ety [
Rn—1 ’ Rn—1

(9.20)

N AP f (@) ey €€ P
Plugging this estimate back into the inner product gives

L e agt @) dal [ 8520 6)] de

On2-r+oN (/R AN f‘) (/

IN

(9.21) ‘<T N AZ;Zg>’

A

n,m
AJ;f-ig

).
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For use later on, we note that for any K € G [S] with ¢ (K) > 275, we can sum over I € G, [K] in (9.20) to
obtain

(9.22)

/ e~ i®(x)€ (Q‘}{)"f(m) dz| < CNQ—(r+s)N/
Rn—1 Rn—1

and with a similar estimate of the corresponding inner product.
We now apply the argument used above for bounding

Z Z / {/Rnl o~ i®(x)-€ A?;;l,n f(x) dm} AT};Z g (&) de|,

IeG,[U) JCTI[0

O (Qi)* f (@)|dz, €€ P I,

1
Zs,O

to the expanded truncated pipes Ps,o [7] in place of the tubes T [0], to obtain from Corollary 53 and the

estimate (9.20), that
po\7
- / d¢
PSI,O[V']

1
‘Psl,o [r]”’ |I|i <CNQ—(7"-&-$)NP/]R B

1

T l v - p ’

oxr s [l ([ JoY st s @) )
Rn-1

B

(9.23) HT N

/R 1 e 1®(@)€ A?;l’” f(z)dz

=

IN

o 2y f o o)

IN

Lr(Rn-1)
since |P!)| ~ (25+7)" 71 2254 implies
PL|F |17 ~ 2 e =975 )ors — gemsyrt
Thus
1 1
n—1,n < —T(N—ﬂ) —S€p,n sNp N
HTA f’LP P, S On2 v Z 2 0" Bl Lp(Rn-1)
Ieg;[U] Ieg,[U]
5 CNQir(N*ﬁ)Q_sg”’” ||lel)/p(Rnfl) ,
and so also,
(9.21) 2= Y Y / { [ e ant f a6 de
1€G.[U) JCP![r Re =t
n—1,n
DD | N T
Ieg,[s]
1 1
P p’
< TAn 1,n ’ p’/
< X ran o | L2 6l e
Ieg,[U] Ieg,[U]
< On2 D2 £l gy N9l o oy
Summing in r gives
s\ s . < . 1 < —SEp.m s .
9.25) | [ T@i)*f (Pa02) 9] S D 2801 S On2 5 [ fllan sy || (Pay 02) 9 o
" =0 L¥' (R"

and a standard argument then yields,

(9.26) / T(Q)* f, 1A+(0,22S)9' S ON27 | Fll o mn—1y 191 Lo 44 0,220) -

Norm estimate
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Since the inner product estimate (9.26) has a product form, we can extend it to a norm estimate by
duality. Indeed, for each s € N, choose an appropriate function g, with ||gs||, . Ry = 1 and

(9.27) <T(Q?J)"f,gs>=HT(Qif)‘fH (U{ U })
Lv 1ol J i

Iegs[U] >0

and then with N > L

> |r@i* ]
s=1

nl’

<> |r@i* ]
LP(A4(0,22%)) s=z1 Q)™ f LP(

U {T;uU Pgm})

Iegs(U] >0

f”LP(R"*l) Hgs||Lp’(R") S ||f||Lp(Rn—1) )

SCGCEANIES 3 oo el

which is (9.19). Here we have used (9.27) in the first equality in the second line above, (9.26) in the second
inequality, and ||gs||; . (rn) = 1 in the final inequality.

9.2.2. The case w = s. In this case we need to take expectation. Since each fixed cube J in the upper half
annulus A, (0,2°) belongs to the truncated tube T/, = T N L{ for essentially all I € G [S], we get

2, = |2 % [ oot r@anf arne

I€G,[U] JCTI,

prn

Q5 ,s; ng

Q

QZ<T (4aQ,)* £ P57 ) 5@21]7’(«4&30)‘]“\\”\

where Q) = > rcq.(qo] A}I;l and Pg’fs o ZJEDk[ }A?Kl,n, and where Qg ranges over a bounded
number of cubes in S with side length approximately 1. Also note that
('AaQSQO) f S 777"4 Z < f’ h?m1> h?ﬁl - Z ar A'}L;’:L”/ :
I€G;[Qo] I€G;[Qo]
Now we apply just part of the estimate (9.14), which followed from Proposition 34, to obtain

‘TS AaQ}),) f‘

Pt S 2 s gl

Lr(B( oze)))

for p > % and m = s € N. We do not need to make use of expanded pipes in this case, due to the small
size of the ball B (0,2%).
However, we actually obtain from Proposition 34 the stronger average norm inequality,

a
EQQS U]Zss ~ < 29s(U]

1
P
5 2_€pms ||f||LP 9 fOI' s € Na

9.28
929 ( 2t Ly (B(0,2" )))

and this is what we will use going forward.

Ts (4aQ3,) f\

9.3. The general case 0 < w < s via square functions. In this subsection we prove the average norm
estimate for each s € Nand 0 < w < s,

2n
T (AaQi)* /] .
T (4.Q})* £ =
Note that we have already proved the endpoint case w = 0 in (9.19), and the other endpoint case w = s
n (9.28). It will be convenient to pass back and forth between average norm estimates and square function
estimates using Khintchine’s inequalities. For example (9.29) is equivalent to,

(9.30) Hsgl f

(9.29) Ef g

< 9Ens , forp>
LP(A4 (0,225-w)) Hf”Lp(U) or p

2n
< Q7 En,pS fo L
LP(A4(0,225—w)) ~ Hf”Lp 5 T p —
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where

1
2

(9.31) spp=| X |raptgf

Ieg;s[U]

is the square function associated with the random decomposition

T (4aQi)* f = Z arT A}l;;l’" f,  for each a € 29V,
Ieg,[U]

We will prove (9.30) in three steps, the first two being local estimates requiring probabilistic arguments,
and the third being a global estimate that uses square function arguments. The probabilistic local estimates
are used to control the sums over cubes I € G, [K] which are typically close together, while the square
function estimate is used to control the sums of cubes K € G,_,, [S] in which the cubes I are typically
farther apart. Once we have established (9.30), we use the decomposition

B, (0,2%°) = Ply[r] U L_j Ay (0,2%7%)
and then appeal to reflection across the horizontal plane tg zoonclude that,
(9.32) HS%sf‘ (B (0.220) <27 ||f|l, . forp> n2_n1.
9.3.1. Step 1: local probabilistic argument. Here we prove the local square function inequality,
HS;L,S (Q0)* f‘ ;(AJr(OQQS_w)) < 9= || (Q3)* f‘ ;(Rn_l) , forall K € Gs ,[U] and s € N,

which by Khintchine’s inequalities is equivalent to the local average expectation inequality,
P
T (AaQ5)* f (Qio)* /|

Lr(A4(0,2257w))
Consider (I,.J) € RE®, ie. I € G,[S], £(J) =2" and J C P!,,. Recall that T/, is the tube given by the
convex hull of the pipe Ps{ w- For 0 < w < s, these tubes have bounded overlap approximately Qu(n=1),

—S8€p.n P
<9 D,

~

o
EQQ[U]

, for all K € Gs_,, [U] and s € N.
Lp(Rn—l)

Definition 54. For each K € G,_,, we define a ‘tube’ Tﬁ;}h = U Ts{w consisting of all the tubes Tiw
Ieg;[K]

with I C K, where each tube Tsl,w has dimensions C12° x 225=% and due to the 2°("~V-overlap, each of the

‘tubes’ Tfj also has dimensions C52° x 2257 but with a larger constant Cs.

We begin with the following more elementary local average inequality for 0 < w < s, in which we restrict
the integration over R” to the tubes T

ERVE
2n
n—1

(9.33) ESQS[S]

75 (AaQi0)* /|

P
— (25— P,
o (258) < g~ (2s—wpe ”inP(U) , for K € Gs_\, [U] and p >

To prove this, we consider the L? and average L* bounds separately and then interpolate.
Step 1(a): local L? estimate
We first compute the norm of Aé‘%{ from L2 (\,_1) to L? (Tfﬁf), where we recall that

S — s/‘\
£ f=(@i0* ), -
Consistent with (5.4), we write and

(9:34) fi = (@Q)*f,
Ui = o f@ots]= X e ()] - X 4
(f{)cb,r Z fq{ﬂ“'

IeG.(K)
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For Iy € G, [K], whose normal is e,, we will use the rectangular convolver ¢, 5, ,, () that has dimensions
279 X ... X 275 x 2¥~2% " and we will multiply by a modulation m (z) that translates the associated Fourier
tube [—2%, QS]n_l X [—223_“’, 223_“’] to be positioned near Ts{ibu. For convenience we momentarily set

(9-35) ¥ (2) =m(2) g 050 (2) -

We then have with f§ = (Q%)‘ f,

L2|w|)\):/n

Z [0 far v ©de= Y / s 0@ (oo *0) (@) da

1,JeG, K] /R" 1,J€G.[K]

o — ——

Az £ (Fwae O [P de = [ Rlpae 0 6) FR)wmr + (01

Note first that the supports of f(II),Qs x 1 and f;}{’Qs x 1) are essentially disjoint unless I ~ J. Next, if we
define the fattened cube

Ig = ([7275,275]7171 « [7271)723’210728]) +e,,

and I* by rotation, then we have

[Fhos s ¥ ()] S [(Sunfihint)| 2272 11 (),

since

d I n—1 .
|f<II>,2s *W ~ ’fq{ *W N ’ CMJCZH X (Lo(non-1) * Qg osw (2) & ‘<Sn_,1;fa h?;;1> 2°72" x (density) 17~ (2),

where the quantity density (of the convolution with ¢, 5., ) satisfies,

(density) 275(n=Dow=2s  —  (density) |I*| = |loyon1| = g—s(n=1)
9—s(n—1)

= density = ——————— =2

25—w
92—s(n—1)9w—2s :

Altogether then, using |I*| = 27*(»=D2%=25 e have from (9.34) that

H }L’é’ (1> )</ (fi)a 20+ ¥ ‘ = > / |1 0s x0 (€)]” de

1€G.[K]
N
5 Z / 7717]c,h?;1>’225 wQS 1[* (g)‘ dfg Z ’<S;}]f,h?;1>‘ <2257w28 5 ) |I*|
1eg,[K]7R" 1€G,[K]
2 2
S—z2waos(n— —s(n— w—428 — n— S—w — n— S—w S 2
ph-tugnmbgmstngu=2e N7 (TR =22 3 (S| S 2 ke
IeG, K] IeG, K]
In terms of the notation T’ (Q‘}()Q f, this implies
(9.36) @], iy S 27 @00 Moo

Step 1(b): local average L* estimate

We run the argument in Subsection 5.2 up until the estimate for ; = Q, [K], where 27¢ ~ dist (I, J)
for I,J € G4 [K],ie. 27t SU(K)=2""%or s —w < t < s. It is this restriction to large ¢ that yields the
geometric gain needed for the average L? estimate when I,J € G, [K]. Then for s —w < t < s, and with
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notation as in Subsection 5.2, we have

2

K] £ > 27002\ (S) ™ F bt ) ((Son) ™ F i)
I,J€G,[K): dist(I,J)~2—t
< g2y Z ‘<(Sf<~',77)_1 I hI;H> 4

1,J€G,[K]: dist(I,J)~2~

5 2—s(n—2)2t2(3—t)("—1) Z ’<( 777) f)hffi>

I€G K]

— 9= t(n— 2)2 s(n—2) HQK 77 f‘

)

LA(U)

which gives

S

SRAS NS SIS SESEC P HQK may)

t=s—w t=s—w t=s—w

2—(s—w)(n—2)2—s(n—2) HQSK 7] f’

N

L4(U)

Q

—(2s—w)(n—2) HQK 77 f‘

Similarly we obtain

i < 92— (2s—w)(n—2) HQK m f’

L)’
and adding these last two inequalities gives,
Mot g2 g,

EH
29 L4 |1/’| )\”) ~

(N

In terms of the notation T (Qﬁ(). f, this implies

< 9—(2s—w)(n-2) H(Q;{)Q f’ 4

~

(9.37)

T @0* /||

LTS5

Step 1(c): local interpolation
Collecting the bounds (9.36) and (9.37) gives,

et

25 w

<

(15 Fllze(xey

~

Now we claim that an application of the interpolation Lemma 36 yields,

’ 2n
s\ —(2s—w)e)
(9.38) T(AQi)* /|| L oy, forp> =
Indeed, the calculatlon at the end of the proof of Lemma 36 shows that if p > =", then (with notation as
in that proof) § = 2 — 1 and so

S—w n 1 9 S— 6 S—w mn— S— - — S—w mn— S— n
{2_2 w 22} {222,;:| :2_221‘ 222(22w+252wn22)9:2_22u 222(221”5)9:2_(25_71))5;%,

W . 1 2s —wn—2 2s—wn 4 1
P 25 —w 2 2 2 2 D

_ n—Q_E é—l _n—l_ﬁ_n—l _ 2n
N 4 4 \p 2 P 2p L

This completes our proof of (9.33) in Step 1.

where
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9.3.2. Step 2: local expanded probabilistic argument. Now we turn to proving the expanded analogue of (9.33)
given by,

(9.39) <27 (V) g-Cowmenn e

‘TAQK f’

Le(PE,[r]) ™ )

2n

-1’

where 6 > 0 and wa [r] is the expanded pipe corresponding to the tube wa. This is proved in the same
way as the case of the tube TK 1 in the previous subsubsection, except that we use the geometric decay in r

for all K € G5y [S] and p >
n

derived from integration by parts and the fact that the expanded pipe PK [r] is far from the tube Ts 0
compensate the geometric growth in r that arises from the expanded plpes
We first define VSIEU to be the vertical cone that is the complement of the union over 0 < r < s of the

S
expanded tubes Tsﬁ}“ (r) in the quarter annulus A (0,227}, and set V; = U U Vslfv Note that
w=0 K€G,_ (U]
the cone Vi will be ‘thin’ if the positive constant C), in Definition 50 is large Now we will repeat the above
proof of (9.33), but with expanded pipes P, [r] in place of the tube TX,, to get (9.39). Indeed, the L? and
average L* estimates (9.36) and (9.37) are now multiplied by an additional factor C52~" for some § > 0,
which percolates through the interpolation to give (9.39).

However, we must choose the constant C,, in Definition 50 to be possibly even larger than it already is.
Namely, given a small positive constant € satisfying 0 < € < €, choose C,, such that the vertical cone V;
is so thin that the Direct Argument in Subsubsection 9.2.1 produces a bound that is C'2°° times as large
as that obtained in Subsubsection 9.2.1,

(9.40) sup (T (AaQi)* £,PY"9)| S 275275 1 o o -

ac29slU]

This bound will prove to be an acceptable estimate if we choose 8;,71 >e>0.
Next we adapt the arguments surrounding (9.38),

)

52 (2s—w) pn

-AaQS f”Lp(]Rn 1y

and (9.23),
|7 izt

< 27T (N=F)gmsenng el gV AR tn |

Lr(PL, Lp(Rn—1)

to conclude that

< CN27T(N7%)2—EP,T,,S

~

it

9—sNgN (Q;{)‘ f‘
2n

n—1

Indeed, the following three steps are almost verbatim analogues of Steps 1(a), (b) and (c) above, and we

include the details only because of the importance of the estimates. For use in Step 2(a) below, we note that
the analogue of (9.22) in the case 0 < w < s is,

/ e—i@(z){ (Q;{)Q f ($) dx 5 CN2—(T’+S)N/
Rn—1

Rn—1

29 U] Lr[R™—1] ’

Lr(PE,[r)

for K € G, [U] and p >

(9.41) N (Qi)* f (z)|dz,  for € € PE [r].

Step 2(a): local expanded L? estimate

We compute the norm of A%“’K from L? (R"~1) to L? (PX, [r]). For Iy € G, [K], whose normal is e,,, we now
use the cylindrical convolver ¢ 5., () that has outer dimensions 277" x 2v=25 and we will multiply by a
modulation m (z) that translates the pipe whose convex hull is the tube [—25%" 25‘”]"71 x [—225w 225~ w]
to be positioned near PK [r]. For convenience we momentarily set

(9.42) P (2) =m(2) 9§ 25w (2) -
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We then have with using (9.34) that,

L2 |q/|A):/n

Z [0 far v ©de= Y / w0 @) (fhoe*0) (@) da

1,JeG, K]/ R" 1,J€G.[K]

J.1];

— 2|~ 2 —
(e O [P@] de= [ (Gidpmrv©) Fidaa = v (e

The supports of f‘{),Q s * % and f;I;2 . * 1 are essentially disjoint unless I ~ J. Next, if we define
5] = ([—2—5,2—8}"‘1 X [—2’w—2s+",2'“’—25+"]) te,,

and I’ [r] by rotation, then we have

(9.43) [Fhaer v (@) S 27N [ (Seh s hint )| 222 1 (2),

since N integrations by part gains 2~ ("T*)N as in (9.41), while N differentiations
O AJT T = (Senf i) O R

loses 257V all of which leads to

Q

|fa x| S
S

where the quantity density satisfies,

‘fé‘,Qs * ¢| X (1‘@(1)0’71*1) * (102,25710 (Z)

‘Q—T’N dfq])

dO’n 1

Q

2575 x (density) 17« (2),

(density) 2" D247 = (density) |I" ]| = | La(r- o | =27V

275(“71) o 225771)77“.

= density = 9—s(n—L)qu—2s+r

Altogether then, using (9.43) and |I* [r]] = 275("~1D2w=25+" we have

| PR
() S 2 o e e ©OF
2
< 9—2rN Z / }]f’h?;1>‘22& w—rgsty 1]*[7‘] (f)‘ d€
I€G[K]
2 n—1\2
SRR S (= T C e
I€G;[K]
2
— 9-2rN92s—w-r Z ’<S;}]f,h?;1>‘ 527(2N+1)7‘2257w ||f||§,2(]R"—1)’
I1€G;[K]

which in terms of T (Qﬁ()* f implies

(9.44) HT (Q%) f‘

< 9- (2N+1)r22s w H(Qs f’

L2(PE,[r]) ™ L2(U)

Step 2(b): local average expanded L* estimate
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We begin by using (9.41) to estimate the L* (P, [r]) norm of A%S;(f:

4
— 4 -
A% f — [ JFea©f @ = [ (7). ()] d
H ’L“ PE,[1]) wa[r]‘ *? ‘ Pulr] ze;e[m "
4 2
< 2—4(r+s)N/ 3 3@3(5) d§:2*4(r+s)N/ > 8%3(5)8%3(5) d¢
PEL | régix) Pl |1 seg.1x)
2
_ gt / ST OVl wONFLLB ()| de
Plulrl |1, 7c6, K]

Then we run the argument in Subsection 5.2, with notation as used there, with the above estimate up
until the estimate for Q; = Q; [K], where 27t ~ dist (1, J) for I,J € G5 [K], ie. 278 S U(K) = 2¥"% or
s—w <t<s. Then for s —w < t < s we have

2
Q [K] g 270N+ > 2022\ (S) ™ fo e ) ((Sn) ™ Fo i)
1,J€G.[K]: dist(I,J)~2~
4
< 9-(UN+2)rg-s(n-2)gt Z ‘<( m}) f, h1n>

1,JEGL[K]: dist(I,J)~2~t

< 9—(AN+2)rg—s(n—2)gto(s—t)(n—1) Z ‘<(Snn)_1f7h1'n>
IeGs[K]

)

~ 9 (4N+2)r2 t(n— 2)2 s(n—2) H QK f‘

LA(S)

which gives

S

Z v, [K] Z Qt[ <2 (AN+2)r Z 9- t(n— 2)2 s(n—2) H Qs f’

t=s—w t=s—w t=s—w

N

LA(S)

4
~ 2_(4N+2)7-2—(s—w)(n—2)2—s(n—2) H(Q;{)Q f’ L 5 2—(4N+2)7'2—(2s—w)(”_2) ”fHZz‘l(S) .

Similarly we obtain
—(AN+2)rg—(2s—w)(n—2 4
U 2 NFRIrg=@emw)n=2) | £|17, o

and adding these results gives,

m
Eo

- To— S—w)(n— 4
<2 (AN+2)r9—(25—w)(n—2) ||fHL4(S)

In terms of T (Q‘}()‘ f this implies

4
9.45 EX T s\ ’ < 9- (4N+2)7"2 (2s—w)(n—2) H s ‘
(9.45) bo |7 (4@ e @* 1.,
Step 2(c): local expanded interpolation
Collecting the bounds (9.44) and (9.45) gives,
s W —(N+1)ro25e
T (4aQ50)* 1 ey 52 (V07222 | £l o
L s _ 1 2=; w n—2 2
Bas ’T(AaQK)‘f LA(PK,[r)) s 2 = e
Now we claim that an application of the interpolation Lemma 36 yields,
o [T (AuQi0* 1], g S22 W
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2n
n—1’

Indeed, the calculation at the end of the proof of Lemma 36 shows that if p >
in that proof) # = 2 — 1 and so

then (with notation as

1 s—w n— 1-0 1 s—w 0 1 s—w n— s—w s—w n—
[2‘(N+f)r2‘2 2 Tz} [2_(N+§)T22T } — g (N4} ro-2egunz2o(2epwy 2aomnsa g

9~ ( )T272g w n222(252—w %)9 _ 2_(N+%)T27(257w)6;m’

, _ 1 2s—wn—-2 (2s—wn é—l
= 0w 2 2 2 2)\p

o n—2 n (4 1 n—1 n n-1 2n
B 4 4 \p 2 p 2 P n—1)"

This completes our proof of (9.39) in Step 2.

where

9.3.3. Step 3: square function argument. Momentarﬂy fix 0 < w < s, and recall (9.39),

<2—TP(N )2 (2s—w)pep,n
Lr(PE,[r]) ™
1
) is

<2—'“P(N )2 (2s—w)pep,n

f”Lp U))

295

which in terms of the square function S}’ K= <Zleg (K] ‘AI i

(9.46) sz 100wy

Lr(PE,[r]) ™

For every K € G,_,, [U], we have

Loz 5 Z Lo, »
r=0
and so from (9.46) and ‘S%Sf =Y Keg, . ‘S" Kf (where S, = S;LSU), we obtain using (g)’ = 25
that,
U P n P n pP— 0K 2
‘ ST’Sf Lp(A4(0,225—w)) = Sszf 1A+(072257“’) = ‘ST,sf ‘ST75 f’ 1A+(0,225*w)
7 K€G, U]
p—2
N /S¥,Sf ‘S%ff‘z:lwr]_z Z /px[] T;Kf) ‘3515
2 L*Z
<Y % (/ s) () s;zsfp)
=0 K€G,_,[U] \’ Pitwlr] PE,[r] ’
2

<
i Z [v] </PK [r]

T KeGs—w

she f]p>

/I;K [r]

KegGs—

and so from (9.46) we have

.1
Dtllneag 022

_ Z 5
< Z 27rp(N7l,) —s—wpepn [|(Qs) f’ [2’"”/ Stof p] ”
r=0 | K€Gs_[S] e e |
5 3
<3 > o P (V=) grn 252 B o (2s-wipey. @* 7| H&Z / o
< Le(U) STl Lr (A (0,225 w))

ﬁ
I
(=]
~
m
Q
b
g€
ez}
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since the overlap constant of the pipes {PSKw [7‘]} KeGo wlS] is 2", Using
P
l@o*s| =|@*s,
KeGaulS) ) o
we conclude that
s—w 2
ST} < —TP(N—* ;—*) —(2s—w)pep,n s
< 2—7‘2<N—L’, %—2)2 (2s—w)2ep,n QU 27(257w)25pyn (Q?j)‘
=0 U)
provided N > ﬁ % + 5. Thus we have proved the square function estimate
877 < 9- (2s—w)ep,n s
H 7! LP(AL (0,225~ %)) Q)
which is (9.29) by Khintchine’s inequalities,
Sl T (A | :
H Ly Lo(ay 22wy 2] Qi)* / LP(A1 (0,225 %))
9.4. Wrapup. We have established the norm expectation,
9.47 o ||T (AaQi)* 1| S ot | £,
(9.47) Q) 1, ey S 2 M
for p > =%, which will play a critical role in completing the proof of our main theorem in the next section.

10. COMPLETION OF THE PROOF OF THE PROBABILISITIC EXTENSION THEOREM 5
—_—
o
((4a@i)* f)

choose gy s,a € ) (A\n) such that
(10.1

Consider the norm for each fixed f € LP, s € N and a € a, and

3,2
SllLe (1Rn\3(0.’225)>\n

0 for J € D [B(0,2%)],

(5 (00#1), 1.0

AJ;Mgf,s,u,

)
| ((4.21)* 1)

and ”gf,s,aHLp/(A y = 1.
®,2s LP(IR"\B(O,22S)>‘”)

Since Blower ((AaQZ)‘ f gf,s,a) and Blower ((AaQ%)‘ f; gf,s,a) each vanish by the assumption on the

disjoint

Alpert support of g¢5 4, in (10.1), and the definitions of the lower disjoint and distal forms, we have

ESQ[S} <T ((-AaQ?J)‘ f) 0 agf,s,a> = Eggs[SJ <T-A ((AHQ?J)‘ f) 0 agf,s,a>
= Elois (7 ((4aQi)* £)_ +95.0a) + Babore (T ((4aQi)* 1) - 970a)

FBIEET (T ((AaQi)* £) 2 970a) + BIET (T ((AaQ)* f) 2950a) }
(4aQi)* /|

from estimates proved in previous sections. Thus we conclude from this and (9.47) that

< sup2” et
a

~

Lo (") ||gf,s,a||LP’(]R") ’

Blow [T (4Q0)* 7],
S Eggs[S] ’((AaQU) f)@z +Eggs[51 ’((AaQU) f)@z
® Lp(luw\B 0,225)An <811 Le (B(0,22¢))
. Y

= oo (T (A0)* 1), o)+ B | (00 1), L

) P ,228
—€n,pS 5\ W —En pS s\ —En.p$
< w2 (AU A sl £ 27 [@O% ]| L S 27 W e
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since the multipliers (Aan,)* and the conjugated projection (QSU)‘ are both bounded on L? by the square
function estimates (2.1). Finally we have

1
EQQ[S]

T (AaQi)* /]

Lr (R

) = Egg[s] Z T (Aanj)‘ f
s=1

LP(R")

75 (4aQ3)* 1]

Lr(R™

e}
"
S ZEQQ[S]
1

s=

< T ey S
s=1

This completes the proof of (1.10), and hence that of Theorem 5.

11. CONCLUDING REMARKS

The two weight testing methods used in this paper might also be applicable to the following open proba-
bilistic problems:

(1)

(2)

(3)
(4)
(5)
(6)

proving a probabilistic analogue of the Bochner-Riesz conjecture or even the stronger local smoothing
conjecture. In the context of the (nonprobabilistic) extension conjecture, see Sogge [Sog] for a proof
that local smoothing implies Bochner-Riesz, and Tao [Taol] for a proof that Bochner-Riesz implies
Fourier restriction,

replacing the sphere in Theorem 5 with any smooth surface of nonvanishing Gaussian curvature, and
possibly with appropriate smooth surfaces of finite type (and with altered indices p),

replacing the Fourier kernel e~%*¢ in Theorem 5 with a more general kernel €2 (z, £),

to multilinear probabilistic variants of the extension conjecture,

deciding the endpoint case g = p’ Z—ﬂ when 2 < p < % in (1.5),

and finally to the much more challenging problem of boundedness of the maximal spherical partial
sum operator in a probabilistic sense.

The main open problem is of course the full deterministic Fourier extension conjecture (1.1).

[AlSaUr]
[AlLuSal
[Alp]
[Boul]
[Bou]
[BoGu]
[CaSj]

[CaHaLa]

REFERENCES

M. ALExis, E. SAWYER AND I. URIARTE-TUERO, A T1 theorem for general Calderén-Zygmund operators with
doubling weights, and optimal cancellation conditions, II, Journal of Functional Analysis 285, issue 11, (2023),
arXiv:2111.06277.

M. ALExis, J.-L. LUNA-GARCIA, AND E. SAWYER, Haar basis and frame testing, arXiv:2309.03743.

BRrRADLEY K. ALPERT, A class of bases in L? for the sparse representation of integral operators, SIAM J. Math.
Anal 1 (1993), p. 246-262.

J. BOURGAIN, Besicovitch type mazimal operators and applications to Fourier analysis, Geom. Funct. Anal. 1
(1990), 147-187.

J. BOURGAIN, Some new estimates for oscillatory integrals, in "Essays on Fourier analysis in honor of Elias M.
Stein", ed. C. Fefferman, R. Fefferman and S. Wainger, Princeton University Press, 1994.

J. BOURGAIN AND L. GUTH, Bounds on oscillatory integral operators based on multilinear estimates (2018),
arXiv:1012.3760.

L. CARLESON AND P. SJOLIN, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972),
287-299.

PETER G. CASSAZA, DEGUANG HAN AND DAVID R. LARSEN, Frames for Banach spaces, Contemporary Mathematics
247 (1999), 149-182.

Davip, Guy, JOURNE, JEAN-LIN, A boundedness criterion for generalized Calderén-Zygmund operators, Ann. of
Math. (2) 120 (1984), 371-397, MR763911 (85k:42041).

CIPRIAN DEMETER, Decouplings and applications, Proc. Int. Cong. of Math. - 2018 Rio de Janeiro, Vol 2 (1535-1556).
C. FEFFERMAN, Inequalities for strongly singular convolution operators, Acta Mathematica 124 (1970), no. 1, 9-36.
C. FEFFERMAN, The multiplier problem for the ball, Annals of Math. 94 (1971), 330-336.

C. FEFFERMAN AND E.M. STEIN, Some mazimal inequalities, Amer. J. Math. 93 (1971), 107-115.

LARRY GUTH, A restriction estimate using polynomial partitioning, J. Amer. Math. Soc., 29 (2016), 371-413.

J. HickMAN AND K. M. ROGERS, Improved Fourier restriction estimates in higher dimensions, arXiv:1807.10940v3.
TuomAs HYTONEN, The two weight inequality for the Hilbert transform with general measures, Proc. London Math.
Soc., Vol. 117, issue 3 (2018), 483-526.

TuomAs HYTONEN, Martingales and harmonic analysis, Lecture notes of a course at the University of Helsinki,
Autumn 2012.

TuomMAs HYTONEN AND EMIL VUORINEN, A two weight inequality between LP (52) and LP, Mathematika 64, issue
1, (2018), 284-302.



[ToZh]
[KaLaTa]
[LaTa)
[LaWal

[Lac]

PROBABILISTIC FOURIER EXTENSION 99

ALEX TOSEVICH AND RUIXIANG ZHANG, A distinction between the paraboloid and the sphere in weighted restriction,
arXiv:2312.12779.

NETs KATZ, I1ZABELLA LABA AND TERENCE TAO, An improved bound on the Minkowski dimension of Besicovitch
sets in R3, Ann. of Math. (2) 152 (2000), 383-446.

IZABELLA LABA AND TERENCE TAO, An improved bound for the Minkowski dimension of Besicovitch sets in medium
dimension, https://arxiv.org/abs/math/0004015v1.

IZABELLA LABA AND HONG WANG, Decoupling and near-optimal restriction estimates for Cantor sets, Int. Math.
Res. Not. (2018), 2944-2966.

MICHAEL T. LACEY, Two weight inequality for the Hilbert transform: A real variable characterization, II, Duke
Math. J. Volume 163, Number 15 (2014), 2821-2840.

[LaSaShUr3] MiCHAEL T. LACEY, ErRIC T. SAWYER, CHUN-YEN SHEN, AND IGNACIO URIARTE-TUERO, Two weight inequality for

[LaSaUrl]
[LaWi]

[Mat)]
[MoVaVe]

[MuOl]
[NTV4]
[Nic]
[RaSaWi]
[Saw]
[Saws3]
[Saw6]

[SaShUr7]

the Hilbert transform: A real variable characterization I, Duke Math. J, Volume 163, Number 15 (2014), 2795-2820.
LACEY, MICHAEL T., SAWYER, Eric T., URIARTE-TUERO, IGNACIO, A characterization of two weight norm inequal-
ities for mazimal singular integrals with one doubling measure, Analysis & PDE, Vol. 5 (2012), No. 1, 1-60.
LACEY, MICHAEL T., WICK, BRETT D., Two weight inequalities for Riesz transforms: uniformly full dimension
weights, arXiv:1312.6163v3.

PERTTI MATTILA, Fourier analysis and Hausdorff dimension, Cambridge University Press.

A. Movyua, A. VARGAS, AND L. VEGA, Schrédinger mazimal function and restriction properties of the Fourier
transform, Internat. Math. Res. Notices (1996), no. 16, 793-815.

C. MuscAarLu AND I. OLIVEIRA, A new approach to the Fourier extension problem for the paraboloid,
arXiv:2110.01482v4.

F. NAzAROV, S. TREIL AND A. VOLBERG, Two weight estimate for the Hilbert transform and corona decomposition
for non-doubling measures, preprint (2004) arXiv:1003.1596.

FABIO NICOLA, Slicing surfaces and the Fourier restriction conjecture, Proceedings of the Edinburgh Mathematical
Society, 52 (2009), pp 515-527, d0i:10.1017/S0013091507000995.

ROBERT RAHM, ERIC T. SAWYER AND BRETT D. Wick, Weighted Alpert wavelets, Journal of Fourier Analysis and
Applications (IF1.273), Pub Date : 2020-11-23, DOI: 10.1007/s00041-020-09784-0, arXiv:1808.01223v2.

ERric T. SAWYER, A characterization of a two weight norm inequality for mazimal operators, Studia Math., 75
(1982), 1-11.

E. SAWYER, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. A.M.S.
308 (1988), 533-545, MR{930072 (89d:26009)}.

E. SAWYER, A T1 theorem for general Calderén-Zygmund operators with comparable doubling weights and optimal
cancellation conditions, Journal d’Analyse Mathématique 146 no. 1 (2022), 205-297.

SAWYER, ERrIC T., SHEN, CHUN-YEN, URIARTE-TUERO, IGNACIO, A two weight theorem for a-fractional singular
integrals with an energy side condition, Revista Mat. Iberoam. 32 (2016), no. 1, 79-174.

[SaShUr12] Sawyer, Eric T., Shen, Chun-Yen, Uriarte-Tuero, Ignacio, A two weight local Tb theorem for the Hilbert transform,

[SaWi]

[Sog]
[Sted]

[Ste]

[Ste2]
[Sto]

[Tao]

Revista Mat. Iberoam 37 (2021), No. 2, 415-641.

Eric T. SAWYER AND BRETT D. WicK, Two weight LP inequalities for smooth Calderén-Zygmund operators and
doubling measures, arXiv:2211.01920v4.

C. SOGGE, Propagation of singularities and mazimal functions in the plane, Inv. Math. 104 (1991), 349-376.
RICHARD JAMES STEDMAN, The Restriction and Kakeya Conjectures, etheses.bham.ac.uk/id/eprint/5466/1/ Sted-
manl14MPhil.pdf.

E. M. STEIN, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure
Math., Williams Coll., Williamstown, Mass., 1978), Part 1, pp. 3-20, Proc. Sympos. Pure Math., XXXV, Part,
Amer. Math. Soc., Providence, R.I., 1979.

E. M. STEIN, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univer-
sity Press, Princeton, N. J., 1993.

BETSY STOVALL, Wawves, Spheres, and Tubes: A Selection of Fourier Restriction Problems, Methods, and Applica-
tions, Notices of the A.M.S. 66, No. 7 (2019), 1013-1022.

TERENCE TAO, Some recent progress on the restriction conjecture, arXiv:math/0303136, In: Brandolini, L., Colzani,
L., Travaglini, G., Iosevich, A. (eds) Fourier Analysis and Convexity. Applied and Numerical Harmonic Analysis.
Birkh#user, Boston, MA. https://doi.org/10.1007/978-0-8176-8172-2 10.

TERENCE TAO, The Bochner-Riesz conjecture implies the Restriction conjecture, Duke Math. J. 96 (1999), 363-376.
TERENCE TA0, 245C, Notes 1: Interpolation of LP spaces | What’s new.

TERENCE TAO, 247B, Notes 1: Restriction theory.

TERENCE TAO, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal., 13 (6), (2003):1359-1384.
TERENCE TAO, Recent developments on the Kakeya and restriction problems, IPAM tutorial, oide 2001 4282 Tao
Kakeya and restriction.pdf.

TERENCE TAO, Restriction theorems, Besicovitch sets, and applications to PDE, Math 254B - Topics in real analysis,
UCLA.

P.A. TomaAs, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477-478.

A. VOLBERG, Calderén-Zygmund capacities and operators on nonhomogeneous spaces, CBMS, Reg. Conf. Ser. in
Math., Number 100 (2003), 167 pages .

HoNG WANG, An improved restriction estimate in R3, arXiv:2210.03878v2.



100 E. T. SAWYER

[WaZal HoNG WANG AND JOSHUA ZAHL, Volume estimates for unions of convex sets, and the Kakeya set conjecture in
three dimensions, arXiv:2502.17655v1.

[Wol2] T. WOLFF, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), no. 3,
651-674.

[Wol] THoMAS WOLFF, Recent work connected with the Kakeya problem, DOI:10.1090/ulect/029/11Corpus ID: 14402276,
(2007).

[Wol3] THoMAS WOLFF, Lectures on harmonic analysis, AMS University lecture series volume 29 (2003).

[Zyg] A. ZyamuNnDp, On Fourier coefficients and transforms of functions of two variables, Studia Mathematica 50 (1974),
no. 2, 189-201.

[blogs.rice] https://bpb-us-el.wpmucdn.com /blogs.rice.edu/dist/8/4754 /files/2016/09/dHHU _Chap2-1mylqq6.pdf

Eric T. SAWYER, DEPARTMENT OF MATHEMATICS AND STATISTICS, MCMASTER UNIVERSITY, 1280 MAIN STREET WEST,
HawmizToN, ONTARIO L8S 4K1 CANADA
E-mail address: sawyer@mcmaster.ca



