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Abstract. The Fourier extension conjecture in n dimensions is equivalent toT1U0fLp(�n) � C kfkLp(Bn�1(0; 12 )) ; p >
2n

n� 1
;

where Tf (�) �
R
Bn�1(0; 12 )

e�i�(x)��f (x) dx, U0 � Bn�1
�
0; 1

2

�
� Rn�1, � (x) =

�
x;
q
1� jxj2

�
and �n is

Lebesgue measure on Rn. Noting that f =
P
I2G4

�
I;�f , we prove that the following probabilistic analogue

of the Fourier extension conjecture,0B@E2G
T1U0

X
I2G

�4�
I;� f


p

Lp(�n)

1CA
1
p

� C kfkLp(Bn�1(0; 12 )) ;

holds for all f 2 Lp
�
Bn�1

�
0; 1

2

��
if and only if p > 2n

n�1 . The operator E2G averages over all sequences of
�1, where G is a grid of dyadic subcubes containing U0, and where4�

I;� is a smooth Alpert pseudoprojection,
resulting in a �martingale tranform�analogue.

By Khintchine�s inequalities, the probabilistic analogue of the Fourier extension conjecture is equivalent
to the square function estimate,ST1U0 fLq(�n) . kfkLp(Bn�1(0; 12 )) ; if and only if

2n

n� 1
< p � 1;

where

ST1U0 f �

0@X
I2G

���T1U0 4n�1;�
I;� f

���2
1A 1

2

:

To prove this probabilistic analogue of the extension conjecture, we use frames for Lp consisting of
smooth compactly supported Alpert wavelets having a large number � > n

2
of vanishing moments, along

with stationary phase and probabilistic interpolation of L2 and L4 estimates, as part of a two weight testing
strategy pioneered by Nazarov, Treil and Volberg. We use probability to obtain L4 estimates with the
correct decay when dealing with resonant subforms, thus circumventing the most challenging issues arising
in the Fourier extension conjecture.
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1. Introduction

In this paper we consider a probabilistic analogue of the Fourier extension conjecture (Theorem 5),

Conjecture 1. Let1 < p; q <1, �n�1 be surface measure on the sphere Sn�1, and F (�) �
R
Rn e

�ix��d� (x)
denote the Fourier transform of the measure �. Then

(1.1)
�Z

Rn
jF (f�n�1) (�)jq d�

� 1
q

� C

�Z
Sn�1

jf (x)jp d�n�1 (x)
� 1

p

; f 2 Lp (�n�1) ;

if and only if q > 2n
n�1 and

1
p +

n+1
n�1

1
q = 1.

1.1. The probabilistic extension problem. Let � (x) �
�
x;

q
1� jxj2

�
2 Sn�1 be the standard para-

metization of the northern hemisphere of Sn�1. Let Bn�1
�
0; 12
�
be the ball of radius 12 centered at the origin

in Rn�1, and de�ne

(1.2) Tf (�) �
Z
Bn�1(0; 12 )

e�i�(x)��f (x)
dx

jdetr� (x)j ; � 2 Rn;

for f 2 Lp
�
Bn�1

�
0; 12
��
. Thus Tf = F�� (f�n�1) = \�� (f�n�1), where ��� denotes the pushforward of

a measure � under the map �. Then the Fourier extension inequality (1.1) is equivalent to boundedness of
the operator T1U0 , i.e.

(1.3) kT1U0fkLq(�n) � C kfkLp(B(0; 12 )) ;

for a �xed subcube U0 of Bn�1
�
0; 12
�
(after considering �nitely many rotations). The Jacobian 1

jdetr�(x)j is

roughly 1 on B
�
0; 12
�
and can be absorbed into the function f (x) - we will often abuse notation by simply

ignoring it.

Now let
n
4n�1;�
I;�

o
I2G

be the family of smooth Alpert pseudoprojections

4n�1;�
I;� =

X
a2�n�1

D
(S�;�)

�1
f; haI;�

E
ha;�I;�

on L2
�
Rn�1

�
as given in Theorem 7 below, where G is a dyadic grid containing U0. Then we can rewrite

(1.3) as,

(1.4)

T1U0X
I2G

4n�1;�
I;� f


Lq(�n)

� C kfkLp(B(0; 12 )) :

The probabilistic Fourier extension problem is then to decide when the following �martingale transform�
analogue of (1.4) holds,

(1.5) E�
2G

T1U0X
I2G

�4n�1;�
I;� f


Lq(�n)

� C kfkLp(B(0; 12 )) ;

where the expectation E�
2G
is taken over all choices of � for each I 2 G. We point out that it is not hard to

see that the probabilistic analogue (1.5) fails for the same pairs (p; q) that (1.1) is currently known to fail
for - see the discussion below.
By Khinchine�s inequalities, (1.5) is equivalent to the square function estimate

(1.6)
ST1U0 fLq(�n) . kfkLp(B(0; 12 )) ;

where ST1U0 is the square function de�ned by

(1.7) ST1U0 f �

0@ X
I2G[U ]

���T1U0 4n�1;�
I;� f

���2
1A 1

2

:
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1.1.1. A precise description of the martingale transform. We begin with a more precise description of
the �martingale transform� inequality (1.5), and then establish a reduction to certain Alpert projections.

Let G be a grid in Rn�1, and let
n
4n�1
I;�

o
I2G

be the orthogonal family of Alpert projections 4n�1
I;� =P

a2�n�1

D
f; hn�1;aI;�

E
hn�1;aI;� on L2

�
Rn�1

�
as in Theorem 7, and let

n
4n�1;�
I;�

o
I2G

be the frame of smooth

Alpert pseudoprojections on Lp
�
Rn�1

�
. For a = faIgI2G 2 f1;�1g

G and f 2 Lp
�
Rn�1

�
, de�ne the Alpert

martingale transform Aa by
Aaf �

X
I2G

aI 4n�1
I;� f;

which is
P
I2G �4I;� f for a choice of � determined by a.

Given linear operators L and S with S invertible, de�ne the conjugation of L by S as

LS � SLS�1:

Let S�;� be the bounded invertible linear map on Lp given in Theorem 7, that takes Alpert wavelets hn�1;aI;�

to their smooth counterparts hn�1;a;�I;� = hn�1;aI;� � ��`(I). For a = faIgI2G 2 f1;�1g
G and f 2 Lp

�
Rn�1

�
,

de�ne the smooth Alpert martingale transform

AS�;�a f �
X
I2G

aI 4n�1;�
I;� f =

X
I2G

�4n�1;�
I;� f

by conjugating Aa with the bounded invertible map S�;�, i.e.

AS�;�a f � S�;�AaS�1�;�f = S�;�
X
I2G

aI

D
S�1�;�f; h

n�1
I;�

E
hn�1I;� =

X
I2G

aI

D
S�1�;�f; h

n�1
I;�

E
hn�1;�I;� =

X
I2G

aI 4n�1;�
I;� f:

Note that both Aa and AS�;�a are involutions, A2a =
�
AS�;�a

�2
= Id.

Since we will be using the notation LS�;� for various operators L = Aa;AaPS ;AaQsK etc., we declutter
the exponent by writing

L� � LS�;� ;

when the bounded invertible linear operator is S�;�.
Then we identify 2G and f1;�1gG and equip 2G with the probability measure � that satis�es,

�� (E) � �
��
E j E � 2�

	�
=
jEj
j2�j ; E � 2� with � � G �nite;

where jF j denotes cardinality of a �nite subset of G, and �
��
E j E � 2�

	�
is the conditional probability of

E given that E � 2� (here 2� is a set of �-measure zero, and see e.g. [Hyt] for a construction of such a
measure �). We de�ne the expectation operator E�

2G
by

E�
2G
F �

Z
2G
F (a) d� (a)

for F a nonnegative function on 2G = f1;�1gG , so that (1.5) becomes,

(1.8) E�
2G

T1U0 (Aa)� f
Lq(�n)

= E�
2G

Z
2G

T1U0 (Aa)� f
Lq(�n)

d� (a) � C kfkLp(B(0; 12 )) :

1.1.2. A reduction of the martingale transform inequality. We now replace 1U0 (Aa)
�
f = 1U0S�;�AaS�1�;� in

(1.8) with

(AaPU )� f � S�;�AaPUS�1�;� = S�;�Aa
X

I2G[U ]

4I;�S
�1
�;�f =

X
I2G[U ]

aI 4�
I;� f;

where PUg �
P
I2G[U ]4I;�g is the Alpert projection of a function g in which the sum over cubes I is

restricted to those contained in U . We claim that this new inequality is su¢ cient for (1.8) in the case

U = �
(2)
G U0

is the G-grandparent of U0, where we assume 3U0 � U , i.e. U0 is an interior grandchild of U .
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More precisely, we will show in a moment that (1.8) is implied by the following truncated inequality,

(1.9) E�
2G

T (AaPU )� f
Lq(�n)

� C kfkLp(B(0; 12 )) ;

in which we have replaced 1U0 (Aa)
�
f by the truncation (AaPU )� f =

P
I2G[U ] aI 4

�
I;� f . This latter

inequality is what we will prove in the remainder of this paper.

Lemma 2. The probabilistic Fourier extension inequality (1.8) is implied by the truncated probabilistic
extension inequality (1.9).

The proof of Lemma 2, given at the end of the next subsection on main results, also gives the following
lemma upon removing the expectations E�

2G
and the random coe¢ cients aI from the proof.

Lemma 3. The deterministic Fourier extension inequality (1.3) is implied by the truncated deterministic
inequality,

(1.10)

T
X

I2G[U ]

4�
I;�f


Lq(�n)

� C kfkLp(B(0; 12 )) :

1.2. The main results and a brief history. The following Fourier extension conjecture arose from un-
published work of E. Stein in 1967, see e.g. [Ste2, see the Notes at the end of Chapter IX, p. 432, where
Stein proved the restriction conjecture for 1 � p < 4n

3n+1 ] and [Ste],

(1.11)
�Z

Rn
jF (f�n�1)jp d�

� 1
p

� C

�Z
Sn�1

jf (x)jp d�n�1 (x)
� 1

p

; for
2n

n� 1 < p � 1:

Our probabilistic analogue of (1.11) is the following conjecture for the case p = q, where (Aa)� = S�;�Aa (S�;�)�1
is the conjugation of the martingale transform Aa with the bounded invertible linear map S�;� used in con-
structing the smooth Alpert wavelets in Theorem 7 below.

Conjecture 4. For � > n
2
1 and notation as above,

(1.12) E�
2G

T1U0 (Aa)� f
Lp(�n)

. kfkLp(B(0; 12 )) ; if and only if
2n

n� 1 < p � 1;

equivalently, the square function estimate,

(1.13)
ST1U0 fLq(�n) . kfkLp(B(0; 12 )) ; if and only if

2n

n� 1 < p � 1;

where

ST1U0 f �

0@ X
I2G[U ]

���T1U0 4n�1;�
I;� f

���2
1A 1

2

:

Theorem 5 (Probabilistic extension conjecture). The probabilistic Fourier extension inequalities (1.12) and
(1.13) hold in all dimensions n � 2.

Here the implied constant in . depends only on harmless quantities determined by context, which in the
display (1.12) are n, p and U0.
Sections 2 through 10 are devoted to proving Theorem 5. Some concluding remarks are made in Section

11.

Acknowledgement 6. I am indebted to Hong Wang and Ruixiang Zhang for pointing out serious gaps in
earlier versions of this paper, which claimed stronger results.

1It seems likely this conjecture holds for the classical Haar expansion (it is of course implied by the Fourier extension
conjecture), but we need � > n

2
� 1 in our proof of the smooth wavelet decomposition in Theorem 7.
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There is a long history of progress on the Fourier extension conjecture in the past half century, and we
refer the reader to the excellent survey articles by Thomas Wol¤ [Wol], Terence Tao [Tao] and Betsy Stovall
[Sto] for this history up to 2019, as well as for connections with related conjectures and topics. Recently,
a proof of the Kakeya set conjecture in R3 has been posted to the arXiv by Hong Wang and Joshua Zahl
[WaZa]. See further references below.

The following
�
1
p ;

1
q

�
-rectangle for boundedness of the extension operator illustrates this progression of

positive results: �
0; 12
�
F F F F F F C F F F F F F F

�
1; 12
�

F F F F F F F F F F F F F F F F
F F F F F A F F F F F F F F F F

� B F F F F F F F F
� � F F F F F F

� � F F F F
� � F F

(0;0) (1;0)

A =

�
n� 1
2n

;
n� 1
2n

�
and B =

�
1

2
;
n� 1
2n+ 2

�
and C =

�
1

2
;
1

2

�
The region marked with F is where boundedness of the extension operator (1.1) is known to fail, i.e. on and
above the line 1

q =
n�1
2n , and strictly above the Knapp line joining A to (1; 0). The probabilistic analogue

(1.5) also fails for these pairs
�
1
p ;

1
q

�
, as is shown below. The point B on the Knapp line is the Stein-

Tomas point, where boundedness is known from their 1975 result. Since the set of points
�
1
p ;

1
q

�
for which

boundedness holds is both left-�lled by embedding of Lp spaces on the sphere, and convex by interpolation,
we see that as of 1975, the region consisting of the line joining B to (1; 0), and everything to the left of it,

was known to be bounded for the extension operator. The point
�

1
2+ 4

n

; 1
2+ 4

n

�
was added by Tao [Tao4] in

2003, and points slightly better than
�

1
2+ 3

n

; 1
2+ 3

n

�
were added by Bourgain and Guth [BoGu, BoGu] in 2018.

Note also that any progress along the open diagonal line joining (0; 0) and A, such as showing that
�
1
p ;

1
p

�
is bounded, yields boundedness for the convex hull of

�
1
p ;

1
p

�
and the line 1

q = 0, as well as all points to the

left. Of course, even if the open diagonal segment joining (0; 0) and A was known to be bounded, this would
still leave the open segment of the Knapp line joining A to B.
Our probabilistic theorem shows that the boundedness region for the probabilistic extension conjecture

includes all points not already eliminated for the extension conjecture, except possibly for the open segment
of the Knapp line joining A to B. Indeed, the conditions q � p0 n+1n�1 and

2n
n�1 < q are necessary for the

extension inequality (1.1) to hold, see e.g. [Tao]. The same arguments show that these conditions on p
and q are necessary for the probabilistic analogue (1.5) to hold, upon considering individual smooth Alpert
wavelets h�I;� (see below for de�nitions). Since �n�1 is a �nite measure, embedding and interpolation with
the trivial L1 ! L1 bound, together with Theorem 5, prove the probabilistic extension inequality for this
range of exponents, except for the range q = p0 n+1n�1 and 1 < p < 2n

n�1 . Since the Stein Tomas result [Tom]
captures the subcase of (1.1) when 1 � p � 2, this leaves only q = p0 n+1n�1 and 2 < p < 2n

n�1 open in the
probabilistic extension conjecture.

1.3. Quick overview of the proof using smooth Alpert wavelets. We begin with a short and informal
narrative.

Narrative: In the theory of nonhomogeneous harmonic analysis, and especially that of two weight
norm inequalities for the Hilbert transform, Nazarov, Treil and Volberg initiated the systematic use
of weighted Haar wavelets to analyze boundedness. The Hilbert transform has kernel 1

x�� , and
thus the action of a Haar wavelet against such a kernel typically has geometric decay away from the
origin, which permits �error�o¤ diagonal terms to be controlled. This two weight theory has concen-
trated mainly on the Hilbert space case p = 2 in the past couple of decades, but more recently Lp

estimates and square functions have attracted attention, especially with the recent work of Hytönen
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and Vuorinen.

At this point it becomes conceivable that square function and two weight techniques might be ap-
plicable to two weight Lp norm inequalities for the Fourier transform, such as the Fourier restriction
conjecture, equivalent to the norm inequality with measures d�n�1 and d�n in Rn,

kF (f�n�1)kLp(�n) . kfkLp(�n�1) :

However, the kernel K (x; �) = e�ix�� of the Fourier transform F is purely oscillatory with no decay
at all, but this is partially o¤set by the curvature of the support of �n�1, that produces decay from
the principle of stationary phase. Moreover, the action of a Haar wavelet against this kernel will be
small if there is little variation of the kernel over the support of the wavelet (i.e. long wavelength),
since the wavelet has vanishing mean, but this gain is limited by the absence of higher order vanish-
ing moments in a Haar wavelet.

Addressing this defect, Alpert constructed wavelets with similar properties to those of Haar, but
with additional vanishing moments that confer extra geometric gain. But even with Alpert wavelets
in place of Haar wavelets, there is no geometric gain when the wavelength of the kernel is small
compared to the size of the wavelet, due to the abrupt cuto¤s in the dyadic construction of these
wavelets.

In this paper we construct smooth Alpert wavelets that permit geometric decay when the wave-
lengths are small, i.e. when there is su¢ cient oscillation of the kernel over the support of the wavelet
to permit gain from repeated integration by parts. Thus we will have gain except in the case of
resonance, when there is neither su¢ cient smoothness nor oscillation in the restriction of the kernel
to the support of either the n� 1 or n dimensional wavelet. In these resonant situations, which form
the core of di¢ culty in the deterministic Fourier extension conjecture, we must appeal to probability
in order to obtain the desired L4 bound needed for interpolation. The remainder of the paper holds
without the intervention of probability.

Our proof of the probabilistic Fourier extension conjecture uses some techniques arising in the two weight
testing theory of operator norms, [NTV4], [Vol], [LaSaShUr3], [SaShUr7], [AlSaUr] and [SaWi], that were
in turn based on older work with roots in [FeSt], [DaJo], [Saw] and [Saw3], and followed by many other
papers as well, such as [Hyt], [LaWi], [SaShUr12] and [HyVu] to mention just a few2. One of the main
new ingredients used here is the construction of compactly supported smooth frames in Lp with derivative
estimates adapted to the support, and as many vanishing moments as we wish. In fact, we will show that the
wavelets ha;�I;� in the following theorem, can be constructed in the spirit of symbol smoothing, as appropriate
convolutions of a certain approximate identity with the Alpert wavelets in [Alp], see also their weighted
versions in [RaSaWi].
As already noted, for the proof of the probabilistic extension conjecture, it is enough to prove (1.9),

E�
2G

T
0@ X
I2G[U ]

aI 4n�1;�
I;� f

1A
Lp

. kfkLp :

However, we begin by writing the Fourier bilinear form
D
T
�P

I2G[U ] aI 4
n�1;�
I;� f

�
; g
E
Rn
as a �nite sum of

subforms
BP (f; g) �

X
(I;J)2P

D
T
�
aI 4n�1;�

I;� f
�
;4n;�

J;�g
E
Rn

2Some of the deepest results in testing theory, namely the good/bad machinery of Nazarov, Treil and Volberg in e.g. [NTV4],
the functional energy from [LaSaShUr3], the two weight inequalities for Poisson integrals from [Saw3], and the upside down
corona and recursion from Lacey [Lac], are not used here. Some reasons for this are the lack of �edge e¤ects�in smooth Alpert
wavelets, the lack of a paraproduct/stopping form decomposition, the �niceness�of surface measure on the sphere and Lebesgue
measure, and of course that the probabilistic conjecture is signi�cantly weaker than the deterministic one. Indeed, the higher
frequencies are damped to a greater extent by expectation, and this is why Kakeya phenomena do not enter into probabilistic
arguments. On the other hand we make extensive use of pigeonholing into bilinear subforms according to the uncertainty
principle, and then applying square function techniques for Alpert frames.
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where P is a collection of pairs of dyadic cubes I 2 G [U ] and J 2 D, and where 4n�1;�
I;� and 4n;�

J;� are
smooth Alpert pseudoprojections in Rn�1 and Rn respectively. This decomposition into subforms follows
that used by Nazarov, Treil and Volberg in the setting of singular integrals with weighted Haar wavelets,
but using the uncertainty principle to compare sizes of cubes here. There are six main subforms, the below
Bbelow (f; g), above Babove (f; g), upper disjoint and distal B

upper
disjoint (f; g) ;B

upper
distal (f; g), and lower disjoint and

distal Blowerdisjoint (f; g) ;B
lower
distal (f; g) subforms. The �rst two subforms are handled by the classical methods of

integration by parts and stationary phase, but also use the smoothness and moment vanishing properties
of the Alpert wavelets constructed in the next theorem, while the next two upper forms also use tangential
integration by parts.
Finally, the last two most challenging forms, namely the lower disjoint and distal forms 3, are handled

using properties of smooth Alpert wavelets with expectation taken over involutive smooth Alpert multipliers.
While the deterministic form estimates for the previous four forms imply corresponding deterministic norm
estimates by duality, this is no longer true for the probabilistic estimates we obtain, and it is important that
we obtain the stronger probabilistic norm estimates in these cases. In fact, we will obtain L2 and average
L4 norm estimates for smooth Alpert pseudoprojections (essentially because these spaces have the upper
majorant property), which can then be interpolated to obtain the required norm bounds. However, this
argument fails without expectation, and so fails to obtain the Fourier extension conjecture, whose attack
requires far more sophisticated techniques. See Proposition 34, and Lemmas 35 and 36 below.
Here is the smooth compactly supported frame of wavelets for Lp that we will use4.

Theorem 7. Let n; � 2 N with � > n
2 , and � > 0 be su¢ ciently small depending on n and �. Then there

are a bounded invertible linear map S�;� : Lp ! Lp (1 < p <1) satisfying

(1.14) kId�S�;�kLp!Lp � Cn;p� ;

and �wavelets�
�
haI;�

	
I2D; a2�n

and
n
ha;�I;�

o
I2D; a2�n

(with �n a �nite index set depending only on � and

n), and corresponding projections and pseudoprojections f4I;�gI2D and
n
4�
I;�

o
I2D

de�ned by

4I;�f �
X
a2�n



f; haI;�

�
haI;� and 4

�
I;� f �

X
a2�n

D
(S�;�)

�1
f; haI;�

E
ha;�I;� ;

satisfying

(1) the standard properties,ha;�I;�
L2

�
haI;�L2 = 1;(1.15)

SupphaI;� � I and Suppha;�I;� � (1 + �) I;rmha;�I;�1 � Cm

�
1

�` (I)

�m
1p
jIj
; for all m � 0;Z

haI;� (x)x
�dx =

Z
ha;�I;� (x)x

�dx = 0; for all 0 � j�j < �:

(2) and for each a 2 �n the wavelets haI;� and h
a;�
I;� are translations and L

2-dilations of the unit wavelets
haQ0;�

and ha;�Q0;�
respectively, where Q0 = [0; 1)

n is the unit cube in Rn,

(1.16) haI;� =

s
jQ0j
jIj h

a
Q0;� � 'I and h

a;�
I;� =

s
jQ0j
jIj h

a;�
Q0;�

� 'I ;

where 'I : I ! Q0 is the a¢ ne map taking I one-to-one and onto Q0,

3challenging because of the resonance that arises when the cubes I and J are appropriately positioned and sized, with the
consequence that neither integration by parts nor moment vanishing can be put to use. In fact, it was precisely this di¢ culty
that led to the serious gap in an earlier version v4 of this paper, and which was pointed out to the author by Hong Wang and
Ruixiang Zhang.

4This particular theorem does not appear to be in the literature on frames.
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(3) and for all 1 < p <1,

f =
X

I2D; a2�n

4a
I;�f =

X
I2D; a2�n

4a;�
I;�f; with convergence in norm for f 2 Lp \ L2;(1.17)


0@ X
I2D; a2�n

��4a
I;�f

��21A 1
2


Lp(Rn)

�


0@ X
I2D; a2�n

���4a;�
I;�f

���2
1A 1

2


Lp(Rn)

� kfkLp(Rn) ; for f 2 Lp \ L2;

(4) and for all I 2 D,
haQ;� (x) = ha;�Q;� (x) ; for x 2 Rn n H� (Q) ;

where H� (Q) is the �-halo of the skeleton of Q de�ned in (2.4) below.
(5) and �nally, the unsmoothed operators 4I;� are self-adjoint orthogonal projections5,

(1.18) 4I;�4J;� =

�
4I;� if I = J
0 if I 6= J

:

Remark 8. This theorem shows that the collection of �almost�L2 projections
n
4�;a
I;�

o
I2D; a2�n

is a �frame�

for the Banach space Lp, 1 < p < 1. The case � = 0 of (1.17) was obtained in the generality of doubling
measures � in [SaWi].

Acknowledgement 9. I thank Brett Wick for instigating our work on two weight Lp norm inequalities in
[LaWi], Michel Alexis and Ignacio Uriarte-Tuero for completing in our joint paper [AlSaUr] the work begun
in [Saw6] on doubling measures, and Michel and Jose Luis Luna-Garcia for our work [AlLuSa] on Lp frames.
Ideas from these papers have played a key role in the development of the arguments used here, as well as ideas
from past collaborations and other works. I also thank Cristian Rios for valuable discussions, suggestions
and critical reading of portions of the manuscript, including a fruitful week long visit to Hamilton. Finally,
I thank Ruixiang Zhang for many enlightening comments, and for pointing to several problems in the proof.

1.3.1. Organization of the paper. In the next section we will construct and prove the required properties
of smooth Alpert wavelets, and in Section 3 we introduce the extension operator and recall what we need
regarding stationary phase. This material is well-known but we repeat it here due to the explicit error
estimates we use. In Section 4 we discuss the initial wavelet decompositions into various subforms and
describe the classical and well-known decay principles we use. Then in Section 5 we turn to the interpolation
of L2 and L4 estimates using probability. Then in Sections 6, 7 and 8 we will control the below, above and
upper disjoint forms respectively in the deterministic sense. Then in Section 9 we will use probability to
control the lower disjoint form by averaging over smooth Alpert martingale transforms. Then we collect
these results to �nish the proof of the probabilistic Fourier extension theorem in Section 10, and in Section
11 we make some concluding comments.

1.4. The initial setup. Fix a small cube U0 in Rn�1 with side length a negative power of 2, and such
that there is a translation G of the standard grid on Rn�1 with the property that U0 2 G, the grandparent
U � �

(2)
G U0 of U0 has the origin as a vertex, and U0 is an interior grandchild of U0, so that

(1.19) U0; U 2 G with U0 �
1

2
U .

Now parameterize a patch of the sphere Sn�1 in the usual way, i.e. � : U ! Sn�1 by

z = �(x) �
�
x;

q
1� jxj2

�
=

�
x1; x2; :::; xn�1;

q
1� jxj2

�
:

For f 2 Lp
�
Bn�1

�
0; 12
��
de�ne

(1.20) Tf (�) � F (�� [f (x) dx]) =
Z
Bn�1(0; 12 )

e�i�(x)��f (x)
dx

jdet� (x)j ;

5The operators 4�
I;� are neither self-adjoint, projections nor orthogonal, but come close as we will see.
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where �� [f (x) dx] is the pushforward of the measure f (x) dx inBn�1
�
0; 12
�
to the patch of sphere �

�
Bn�1

�
0; 12
��

lying above Bn�1
�
0; 12
�
, and that we typically abuse notation by ignoring the harmless factor 1

jdet�(x)j . Re-
call that the Fourier extension inequality is equivalent to (1.3). The bilinear form associated to T1U0 in (1.3)
can be decomposed by,

hT1U0f; gi =
*
T1U0

 X
I2G

4n�1
I;� f

!
;
X
J2D

4n
J;�g

+
=

X
(I;J)2G�D

D
T1U0 4n�1

I;� f;4n
J;�g

E
;

where
�
4n
J;�

	
J2D is an Alpert basis of projections for L2 (Rn), and

n
4n�1
I;�

o
I2G

is an Alpert basis of

projections for L2
�
Rn�1

�
. Using rotation invariance, the Fourier extension conjecture is shown at the

beginning of Section 3 below, to be equivalent to boundedness of T1U0 , taken over a �nite collection of
patches � (U0).

Notation 10. We are using the index n� 1 or n in the superscript of the notation 4n�1;�
I;� f for an Alpert

projection, to denote whether the wavelet lives in Rn�1 or in Rn. The index � in the superscript denotes the
smoothness injected by convolution in the construction of the smooth Alpert wavelets below. Moreover, we
usually suppress the index a 2 � that runs over the set of all Alpert wavelets associated with a given cube.

However, in order to carry out the standard two weight approach to bounding T , it will be necessary

to �x � 2 N, � > n
2 , and instead expand the bilinear form

D
T (PU )

�
f; g
E
=
D
T
P
I2G[U ]4

n�1;�
I;� f; g

E
,

corresponding to the equivalent inequality (1.10), in terms of the smooth �-Alpert decompositions of f and
g, D

T (PU )
�
f; g
E
=

X
(I;J)2G[U ]�D

D
T 4n�1;�

I;� f;4n;�
J;�g

E
;

so as to exploit the cancellation inherent in the oscillatory kernel e�i�(x)�� of the operator TS .

De�nition 11. A subset E of the unit sphere Sn�1 in Rn is said to be a ball if it is the intersection of the
sphere with a halfspace, and is said to be a pseudoball with constant Cpseudo, if there are concentric balls B1
and B2 such that

(1.21) B1 � E � B2 and jB2j � Cpseudo jB1j ;

where jEj denotes surface measure on the sphere. We simply say that E is a pseudoball when Cpseudo
is understood from context, and we will sometimes de�ne a �center� of E to be the center (not uniquely
determined) of the balls B1 and B2 in (1.21).

De�nition 12. Given a subset F of Euclidean space Rn, we de�ne the tangential and radial �projections�of
F , onto Sn�1 and [0;1) respectively, by

�tan (F ) �
�
�

j�j : � 2 F
�
and �rad (F ) � fj�j : � 2 Fg :

Then for Cpseudo chosen large enough in (1.21), the subsets � (I) and �tan (J) of the sphere Sn�1 are
pseudoballs with constant Cpseudo, for all I 2 G [U ] and J 2 D. For E � Sn�1, we denote by �E the set
antipodal to E, i.e. �E =

�
� 2 Sn�1 : �� 2 E

	
.

We now divide the collection of pairs (I; J) 2 G [U ]�D according to the relative size and location of their
associated pseudoballs � (I) and �tan (J), as dictated by the uncertainty principle:

G [U ]�D � P [ P� ;(1.22)

where P = P0 [
1[
m=1

Pm [ R [ X ;

and P� = f(I;�J) : (I; J) 2 Pg ;
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and where

P0 � f(I; J) 2 G [U ]�D : �tan (J) � � (CpseudoI)g ;

Pm �
�
(I; J) 2 G [U ]�D : 2m+1I � S and �tan (J) � �

�
2m+1CpseudoI

�
n �

�
2m

1

Cpseudo
I

��
; 1 � m � cs ;

R � f(I; J) 2 G [U ]�D : � (I) � �tan (CpseudoJ)g ;
X �

�
(I; J) 2 G [U ]�D : J � Rn+ and �tan (CpseudoJ) \ � (2U) = ;

	
:

Note that there is some bounded overlap among the pairs in this decomposition, but this overcounting is
inconsequential. Finally we point out that it su¢ ces to show that������

X
(I;J)2P

D
T 4n�1;�

I;� f;4n;�
J;�g

E������ . kfkLp kgkLp0 ;
since (I; J) 2 P� if and only if (I;�J) 2 P, and this amounts to replacing the kernel e�i�(x)�� with the
kernel ei�(x)��, for which the estimates obtained below are identical.

1.4.1. Proof of reduction to the truncated inequality. Here we prove Lemma 2.

Proof of Lemma 2. Using f =
P
I2G4

n�1;�
I;� f from the �rst line in (1.17) of Theorem 7 below, we write6

1U0 (Aa)
�
f = 1U0

X
I2G

aI 4n�1;�
I;� f = 1U0

X
I2G[U ]

aI 4n�1;�
I;� f + 1U0

1X
k=1

a�(k)U0 4
n�1;�
�(k)U0;�

f � La1f + L
a
2f:

since 1U0 4
n�1;�
I;� f vanishes if I =2 G [U ] [

�
�(k)U0

	1
k=1

. Indeed, Supp4n�1;�
I;� � (1 + �)U which is disjoint

from U0 if I =2 G [U ] [
�
�(k)U0

	1
k=1

. We will now show that

E�
2G
kTLa1fkLq = E�

2G

T1U0
X

I2G[U ]

aI 4n�1;�
I;� f


Lq

. E�
2G

T
X

I2G[U ]

aI 4n�1;�
I;� f


Lq

;(1.23)

sup
a
kTLa2fkLq = sup

a

T1S0
1X
k=1

a�(k)U0 4
n�1;�
�(k)U0;�

f


Lq

. kfkLp(B(0; 12 )) ;

which is easily seen to complete the proof that (1.9) implies (1.8).
To see the �rst line in (1.23), choose a rectangle R0 in Rn with base U0 and height 1 so that R0 \ Sn�1 =

�(U0). Then ��1U0 = 1R0
��, and since F1R0

F�1 is a bounded Fourier multiplier on Lq (Rn) for all
1 < q <1, we obtain

E�
2G
kTL1fkLq = E

�
2G

F��1U0
X

I2G[U ]

aI 4n�1;�
I;� f


Lq

= E�
2G

F1R0
��

X
I2G[U ]

aI 4n�1;�
I;� f


Lq

= E�
2G

�F1R0
F�1

�
F��

X
I2G[U ]

aI 4n�1;�
I;� f


Lq

. E�
2G

F��
X

I2G[U ]

aI 4n�1;�
I;� f


Lq

= E�
2G

T
X

I2G[U ]

aI 4n�1;�
I;� f


Lq

:

Now we turn to proving the second line in (1.23). Let  be a smooth bump function that is 1 on U0 and
supported in U . Then arguing once more as above,

kT1U0La2fkLq = kF��1U0 L
a
2fkLq = kF1R0

�� L
a
2fkLq

=
F1R0F�1F�� La2f


Lq
. kF�� La2fkLq = kT La2fkLq ;

6I thank Cristian Rios for pointing out this simpli�cation to an earlier proof.
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where

 La2f =  
1X
k=1

a�(k)U0 4
n�1;�
�(k)U0;�

f =
1X
k=1

a�(k)U0

D
1U0 (S�;�)

�1
f; h�(k)U0;�

E
 h�

�(k)U0;�
:

Thus we see that  La2f is smooth and compactly supported upon using that (i) the functions  h
�
�(k)U0;�

are
smooth and compactly supported uniformly in k, and that (ii) we have the pointwise inquality,�����

1X
k=1

a�(k)U0

D
1U0 (S�;�)

�1
f; h�(k)U0;�

E
 h�

�(k)U0;�

����� . k kL1
1X
k=1

1U0 (S�;�)�1 f
L1

h�(k)U0;�2L1
.

1X
k=1

1U0 (S�;�)�1 f
Lp

h�(k)U0;�2L1 .
1X
k=1

kfkLp
1���(k)U0�� . kfkLp :

Consequently, the Fourier transform \�� ( La2f) of the smooth surface measure �� ( La2f) has decay��� \�� ( La2f) (�)
��� . k k

C
n
2
+2 kfkLp (1 + j�j)

�n�1
2 ;

by e.g. [Ste2, Theorem 1 page 348] or Theorem 29 below. Since this function is in Lq (Rn) for all q > 2n
n�1 ,

it follows that

kTLa2fkLq . kfkLp(U) ;

which proves the second line in (1.23), and completes the proof that (1.9) implies (1.8). �

2. Smooth Alpert frames in Lp spaces

Recall the Alpert projections f4Q;�gQ2D and corresponding wavelets
�
haQ;�

	
Q2D; a2�n

of order � in Rn

that were constructed in B. Alpert [Alp] - see also [RaSaWi] for an extension to doubling measures, and for
the terminology we use here. In fact,

�
haQ;�

	
a2� is an orthonormal basis for the �nite dimensional vector

subspace of L2 that consists of linear combinations of the indicators of the children C (Q) of Q multiplied by
polynomials of degree at most �� 1, and such that the linear combinations have vanishing moments on the
cube Q up to order �� 1:

L2Q;k (�) �

8<:f = X
Q02C(Q)

1Q0pQ0;k (x) :

Z
Q

f (x)x`id� (x) = 0; for 0 � ` � k � 1 and 1 � i � n

9=; ;

where pQ0;k (x) =
P
�2Zn+:j�j�k�1

aQ0;�x
� is a polynomial in Rn of degree j�j = �1 + :::+ �n at most �� 1,

and x� = x�11 x�22 :::x
�n�1
n�1 . Let dQ;� � dimL2Q;� (�) be the dimension of the �nite dimensional linear space

L2Q;� (�). Moreover, for each a 2 �n, we may assume the wavelet haQ;� is a translation and dilation of the
unit wavelet haQ0;�

, where Q0 = [0; 1)
n is the unit cube in Rn.

2.1. Alpert square functions. It is shown in [SaWi, Corollary 14] (even for doubling measures in place
of Lebesgue measure) that despite the failure of the �-Alpert expansion to be a martingale when � �
2, Burkholder�s proof of the martingale transform theorem nevertheless carries over to prove, along with
Khintchine�s inequalities, that the Lp norm of the Alpert square function Sf of f is comparable to the Lp
norm of f , where

Sf (x) �

0@ X
Q2D; a2�n

��4a
Q;�f (x)

��21A 1
2

; x 2 Rn:

Of course Sf also depends on the grid D and �, but we suppress this in the notation.

Theorem 13 (Sawyer and Wick [SaWi]). For � 2 N and 1 < p <1, we have

(2.1) kSfkLp(Rn) � Cp;n;� kfkLp(Rn) :
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2.2. Smoothing the Alpert wavelets. Given a small positive constant � > 0, de�ne a smooth approximate
identity by �� (x) � ��n�

�
x
�

�
where � 2 C1c (BRn (0; 1)) has unit integral,

R
Rn � (x) dx = 1, and vanishing

moments of positive order less than �, i.e.

(2.2)
Z
Rn
� (x)xdx = �0jj =

�
1 if jj = 0
0 if 0 < jj < �

:

In fact we may take for � (x) a product function � (x) =
Qn
i=1 ' (xi) where ' 2 C1c ((�1; 1)) satis�es

(2.3)
Z
R
' (x)xdx =

�
1 if  = 0
0 if 0 <  < �

; for 1 � i � n:

One way to construct a function ' satisfying (2.3) is to pick � 2 C1c
��
3
4 ; 1
��
with

R
� (y) dy = 1, a large

N 2 N, and then for � � (�1; :::; �N ) to de�ne,

'� (x) =
NX
m=1

�m� (2
mx) :

Then with the change of variable y = 2mx we have,Z
'� (x)x

dx =

NX
m=1

�m

Z
� (2mx)xdx =

NX
m=1

�m2
�m(+1)

Z
� (y) ydy = C

NX
m=1

�m2
�m(+1):

In order to achieve
R
'� (x)x

dx =

�
1 if  = 0
0 if 0 <  < �

we need to solve the linear system,

1 =

NX
m=1

�m2
�m and 0 =

NX
m=1

�m2
�m(+1); for 0 <  < �;

which in matrix form is
e1 =M�� : where M� �

�
2�m`

�
1�m�N
1�`��

:

We take N � � and observe that the square matrix M� �
�
2�m`

�
1�m��
1�`��

has nonzero determinant, in fact

jdetM�j is bounded below by 2�
�2(��1)

2 . Indeed, the square Vandermonde matrix

V (x) = V (x1; x2; :::; xn) �

26664
x1 x21 � � � xn1
x2 x22 � � � xn2
...

...
. . .

...
xn x2n � � � xnn

37775
has determinant detV (x) =

Y
1�i<j�n

(xj � xi). Thus with x (�) =
�
2�1; 2�2; :::; 2��

�
2 R�, we have

V (x (�)) =
�
2�m`

�
1�m��
1�`��

=M� and so

jdetM�j =
Y

1�i<j��

��2�j � 2�i�� � Y
1�i<j��

2�� = 2��
�(��1)

2 :

Thus we can �nd coe¢ cients � � (�1; :::; �N ) such that ' = '� satis�es (2.3).
In the spirit of symbol smoothing for pseudodi¤erential operators, we de�ne smooth Alpert �wavelets�by

ha;�Q;� � haQ;� � ��`(Q);

and we claim that haQ;� and h
a;�
Q;� coincide away from the �-neighbourhood (often referred to as a �halo�)

(2.4) H� (Q) � fx 2 Rn : dist (x; SQ) < �g ;
of the skeleton SQ �

S
Q02CD(Q) @Q

0. Note that away from the skeleton, the Alpert wavelet haQ;� restricts
to a polynomial of degree less than � on each dyadic child of Q. We now show the same for smooth Alpert
wavelets away from the halo of the skeleton.
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Lemma 14. With notation as above and � satisfying (2.2), we have

(2.5) haQ;� (x) = ha;�Q;� (x) ; x 2 Rn n H� (Q) :

Proof. If m� (x) � x� = x�11 x�22 :::x�nn is a multinomial, then

(m� � �) (x) =
X

0����

�
c�;�

Z
y���� (y) dy

�
x� = x� = m� (x) ;

which shows that (2.5) holds. �

We also observe that for 0 � j�j < �,Z
ha;�Q;� (x)x

�dx =

Z
��`(I) � haQ;� (x)x�dx =

Z Z
��`(I) (y)h

a
Q;� (x� y)x�dx

=

Z
��`(I) (y)

�Z
haQ;� (x� y)x�dx

�
dy =

Z
��`(I) (y)

�Z
haQ;� (x) (x+ y)

�
dx

�
dy

=

Z
��`(I) (y) f0g dy = 0;

by translation invariance of Lebesgue measure.

2.3. The reproducing formula. For the purposes of this subsection we will change notation from that in
Theorem 7 in the introduction by de�ning

4�
I;�f �

X
a2�n



f; haI;�

�
ha;�I;� = (4I;�f) � ��`(I) :

Next, for any grid D, we wish to show that for � > 0 su¢ ciently small, the linear map SD�;� de�ned by

(2.6) SD�;�f �
X

I2D; a2�n



f; haI;�

�
ha;�I;� =

X
I2D

4�
I;�f ; f 2 Lp;

is bounded and invertible on Lp, and that we have the reproducing formula,

f (x) =
X

I2D; a2�n

D�
SD�;�

��1
f; haI;�

E
ha;�I;� (x) ; for all f 2 Lp \ L2;

with convergence in the Lp norm. Since � > n
2 is �xed throughout our arguments we will often write S

D
�

instead of SD�;� in the sequel.

Proof of Theorem 7. Theorem 7 follows easily, together with what was proved just above, from Theorem 15
below if we de�ne the pseudoprojection 4�

I;� in Theorem 7 as the pseudoprojection e4�

I;� in Theorem 15. �

We include arbitrary grids D in Theorem 15 since this may be useful in other contexts where probability
of grids plays a role, originating with the work of Nazarov, Treil and Volberg, see e.g. [NTV4] and [Vol], and
references given there.

Theorem 15. Let n � 2 and � 2 N with � > n
2 . Then there is �0 > 0 depending on n and � such that

for all 0 < � < �0, and for all grids D in Rn, and all 1 < p < 1, there is a bounded invertible operator
SD� = SD�;� on L

p, and a positive constant Cp;n;� such that the collection of functions
n
ha;�I;�

o
I2D; a2�n

is a

Cp;n;�-frame for Lp, by which we mean7,

f (x) =
X

I2D; a2�n

e4�

I;�f (x) ; for a.e. x 2 Rn, and for all f 2 Lp;(2.7)

where e4�

I;�f �
X
a2�n

D�
SD�
��1

f; haI;�

E
ha;�I;� ;

7See [AlLuSa] and [CaHaLa] for more detail on frames in Lp spaces.
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and with convergence of the sum in the Lp norm, and

1

Cp;n;�
kfkLp �


 X
I2D

��� e4�

I;�f
���2! 1

2


Lp

;


 X
I2D

���4�
I;�f

���2! 1
2


Lp

� Cp;n;� kfkLp ;

for all f 2 Lp:

Notation 16. We will often drop the index a parameterized by the �nite set �n as it plays no essential role
in most of what follows, and it will be understood that when we write

4�
Q;�f = hf; hQ;�ih

�
Q;�;

we actually mean the Alpert pseudoprojection,

4�
Q;�f =

X
a2�n



f; haQ;�

�
ha;�Q;� :

Now we turn to two propositions that we will use in the proof of Theorem 15.

Proposition 17. For � > n
2 and � > 0 su¢ ciently small, we haveSD� fLp � kfkLp ; for f 2 Lp \ L2 and 1 < p <1:

Proposition 18. For � > n
2 and � > 0 su¢ ciently small, we have�SD� �� f

Lp
� kfkLp ; for f 2 Lp \ L2 and 1 < p <1:

To prove these propositions, we will need some estimates on the inner products
D
h�I;�; hQ;�

E
where one

wavelet is smooth and the other is not. Fix a dyadic grid D. We say that dyadic cubes Q1 and Q2 are
siblings if ` (Q1) = ` (Q2), Q1 \Q2 = ; and Q1 \Q2 6= ;, and we say they are dyadic siblings if in addition
they have a common dyadic parent, i.e. �DQ1 = �DQ2. Finally, we de�ne Car (Q) to be the set of I 2 D
with ` (I) < ` (Q) such that I and Q share a face. We refer to these cubes I as Carleson cubes of Q, and
note they can be either outside Q or inside Q. Finally, we may assume without loss of generality that � is a
negative integer power of 2.

Lemma 19. Suppose � 2 N with � > n
2 , 0 < � = 2�k < 1, and I;Q 2 D, where D is a grid in Rn. Then we

have ���Dh�Q;�; hQ;�E��� � 1 and
���Dh�Q;�; hQ0;�

E��� . �; for Q and Q0 siblings;���Dh�I;�; hQ;�E��� . �

�
` (I)

` (Q)

�n
2

; for I 2 Car (Q) ;

���Dh�I;�; hQ;�E��� . �

�
` (Q)

` (I)

�n
2�1

; for Q 2 Car (I) and ` (Q) � �` (I) ;

���Dh�I;�; hQ;�E��� . 1

��

�
` (Q)

` (I)

��+n
2

; for ` (Q) � �` (I) and Q \H �
2
(I) 6= ;;D

h�I;�; hQ;�

E
= 0; in all other cases:

Proof. Fix a grid D, and take 0 < � < 1. We haveD
h�Q;�; hQ;�

E
= hhQ;�; hQ;�i+

D
h�Q;� � hQ;�; hQ;�

E
= 1 +

Z
H�(Q)

�
h�Q;� � hQ;�

�
(x)hQ;� (x) dx;

where�����
Z
H�(Q)

�
h�Q;� � hQ;�

�
(x)hQ;� (x) dx

����� . h�Q;� � hQ;�1 khQ;�k1 jH� (Q)j . 1p
jQj

1p
jQj

� jQj = �:
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Next we note that if I is a dyadic cube and Q 2 Car (I), then Q\H� (I) 6= ; and
D
h�I;�; hQ;�

E
6= 0 where

� = 2�k imply that SupphQ;� = Q � H� (I). If Q � H� (I), then we haveD
h�I;�; hQ;�

E
=

Z
H�(I)

1Qh
�
I;� (x)hQ;� (x) dx =

Z
Q\H�(I)

�
hI;� � ��`(I)

�
(x)hQ;� (x) dx

=

Z
Q\H�(I)

�Z
I

hI;� (y)��`(I) (x� y) dy
�
hQ;� (x) dx =

Z
I

hI;� (y)

(Z
Q\H�(I)

��`(I) (x� y)hQ;� (x) dx
)
dy

=

Z
I\2�`(I)Q

hI;� (y)

8<:
Z
Q\H�(I)

24��`(I) (x� y)� ��1X
j=0

((x� cQ) � r)j ��`(I) (cQ � y)

35hQ;� (x) dx
9=; dy

� khI;�k1
�r���`(I)�1 ` (Q)

� khQ;�k1
Z
B(cQ;�`(I))

Z
Q\H�(I)

dxdy

.
s
1

jIj kr
��k1

�
1

�` (I)

�n+�
` (Q)

�

s
1

jQj jB (cQ; �` (I))j jQ \H� (I)j .
1

��

�
` (Q)

` (I)

��+n
2

;

since khI;�k1 .
q

1
jIj , khQ;�k1 .

q
1
jQj and

r���`(I)1 � kr��k1
�

1
�`(I)

��
.

If Q 2 Car (I) and ` (Q) � �` (I), then we have the trivial estimate

���Dh�I;�; hQ;�E��� . �` (I) ` (Q)
n�1

s
1

jIj jQj = �

�
` (Q)

` (I)

�n
2�1

:

On the other hand, if I 2 Car (Q), we claim that���Dh�I;�; hQ;�E��� . �

�
` (I)

` (Q)

�n
2

:

Indeed, this is clear if Q\ I = ; since then
���Dh�I;�; hQ;�E��� � � jIj

q
1
jIj

q
1
jQj , while if Q

0 2 CD (I) is the child

containing I, and if ' (x� cQ0) is the polynomial whose restriction to Q0 is (1Q0hQ;�) (x), then
D
h�I;�; '

E
= 0

and so ���Dh�I;�; hQ;�E��� = ���Dh�I;�; hQ;� � 'E��� . �

s
jIj
jQj = �

�
` (I)

` (Q)

�n
2

:

�

We will also need the following consequence of the Marcinkiewicz interpolation theorem.

Lemma 20. For 1 < p <1 and � 2 N, we have
0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1H�(I) (x)

!21A 1
2


Lp

� Cp;n�
p kfkLp ;

where p �

8<:
1

2(p�1) if p > 2
1
2 if p = 2
p�1
p(3�p) if 1 < p < 2

:

Proof. De�ne the square function R� by

R�f (x) �

0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1I\H�(I) (x)

!21A 1
2

:
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Using 1H�(I) (x) .M1I\H�(I) (x), the Fe¤erman-Stein vector valued maximal inequality [FeSt] yields,
0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1H�(I) (x)

!21A 1
2


Lp

.


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

M1I\H�(I) (x)

!21A 1
2


Lp

.


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1I\H�(I) (x)

!21A 1
2


Lp

= kR�f (x)kLp :

Now we note that

kR�fkLp .


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1I

!21A 1
2


Lp

=


 X
I2D

(4I;�f)
2

! 1
2


Lp

= kRfkLp � kfkLp

and

kR�fk2L2 =

Z X
I2D

 
jhf; hI;�ij
jIj

1
2

1I\H�(I) (x)

!2
dx =

Z X
I;I02D

jhf; hI;�ij
jIj

1
2

jhf; hI0;�ij
jI 0j

1
2

1I\H�(I) (x)1I0\H�(I0) (x) dx

=
X

I;I02D

jhf; hI;�ij
jIj

1
2

jhf; hI0;�ij
jI 0j

1
2

jI \H� (I) \ I 0 \H� (I 0)j �
X

I;I02D

jhf; hI;�ij
jIj

1
2

jhf; hI0;�ij
jI 0j

1
2

� jI \ I 0j

= �

Z X
I2D

 
jhf; hI;�ij
jIj

1
2

1I (x)

!2
dx = �

Z X
I2D

jhf; hI;�ij2

jIj 1I (x) dx = �
X
I2D

jhf; hI;�ij2 = � kfk2L2 :

Thus the (linearizable) sublinear operator R� maps L2 ! L2 with bound B2 � �
1
2 , and maps Lq ! Lq with

bound Bq � C 0n;q for 1 < q <1 and q 6= 2.
In the case p > 2, let q = 2p. Then by the scaled Marcinkiewicz theorem applied to R� with exponents 2

and q = 2p, see e.g. [Tao2, Remark 29], we have

kR�fkLp � C 00n;pB
1��
2 B�2p = C 00n;p�

1
2 (1��)

�
C 0n;2p

��
= Cn;p�

1
2(p�1) ;

with Cn;p = C 00n;p
�
C 0n;2p

� p�2
p�1 , since 1

p =
1��
2 + �

2p implies 1� � =
1
p�1 .

In the case 1 < p < 2, take q = 1+p
2 and apply the scaled Marcinkiewicz theorem to R� with exponents 2

and q = 1+p
2 to obtain

kR�fkLp � C 00n;pB
1��
2 B�1+p

2

= C 00n;p�
1
2 (1��)

�
C 0
n; 1+p2

��
= Cn;p�

p�1
p(3�p) ;

with Cn;p = C 00n;p

�
C 0
n; 1+p2

��
, since 1

p =
1��
2 + �

1+p
2

implies 1� � = 2p�2
p(3�p) . �

2.3.1. Injectivity. We can now prove Proposition 17.

Proof of Proposition 17. We have

SD� f =
X
Q2D

4Q;�S�f =
X
Q2D

hS�f; hQ;�ihQ;� =
X
Q2D

*X
I2D

hf; hI;�ih�I;�; hQ;�

+
hQ;� =

X
Q;I2D

hf; hI;�i
D
h�I;�; hQ;�

E
hQ;� ;
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and

SD� fLp �

0@X
Q2D

jhS�f; hQ;�ihQ;�j2
1A 1

2


Lp

=


0@X
Q2D

�����X
I2D

hf; hI;�i
D
h�I;�; hQ;�

E
hQ;�

�����
2
1A 1

2


Lp

�


0@X
Q2D

���hf; hQ;�iDh�Q;�; hQ;�E���2 jhQ;�j2
1A 1

2


Lp

+O

0BB@

0B@X
Q2D

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

jhQ;�j2

1CA
1
2


Lp

1CCA

�


0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

+O

0BB@

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

1Q

1CA
1
2


Lp

1CCA ;

where by the square function estimate (2.1),

Cp kfkpLp �


0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

=


0@X
Q2D

j4Q;�f j2
1A 1

2


p

Lp

� cp kfkpLp ;

for some Cp; cp > 0.
Thus we have for each Q 2 D,X

I2D: I 6=Q
hf; hIi hh�I ; hQi =

X
I2D: `(I)<`(Q)

I2Car(Q)

hf; hIi hh�I ; hQi+
X

I2D: `(I)>`(Q)
Q\H �

2
(I) 6=;

hf; hIi hh�I ; hQi

+
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hIi hh�I ; hQi :

As a consequence of the estimates in Lemma 19, we have for each Q 2 D,������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ

E������ . �
X

I2D: `(I)<`(Q)
I2Car(Q)

jhf; hI;�ij
�
` (I)

` (Q)

�n
2

+
X

I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

jhf; hI;�ij
1

��

�
` (Q)

` (I)

��+n
2

+

��������
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i
D
h�I;�; hQ

E��������
� A (Q) +B (Q) + C (Q) :

Altogether we have
0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

1Q

1CA
1
2


Lp

.


0@X
Q2D

1

jQjA (Q)
2
1Q

1A 1
2


Lp

(2.8)

+


0@X
Q2D

1

jQjB (Q)
2
1Q

1A 1
2


Lp

+


0@X
Q2D

1

jQjC (Q)
2
1Q

1A 1
2


Lp

:

We now claim that

(2.9)


0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2

1Q

1CA
1
2


Lp

. �
1
2p

�
log2

1

�

�
kfkLp :
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With this established, and since � > n
2 , we obtain

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
h�I;�; hQ;�

E������
2
1CA

1
2


Lp

� C�
1
2p

�
log2

1

�

�
kfkLp <

cp
2
kfkLp ;

with � > 0 su¢ ciently small. This then gives

Cp kfkLp �
SD� fLp � cp kfkLp �

cp
2
kfkLp =

cp
2
kfkLp ;

which completes the proof of Proposition 17 modulo (2.9).
We prove (2.9) by estimating each of the three terms on the right hand side of (2.8) separately, beginning

with the term involving A (Q).
Case A (Q): For each Q 2 D, we have for 0 < " < 1 and 0 <  < n� ",

A (Q) = �
X

I2D: `(I)<`(Q)
I2Car(Q)

jhf; hI;�ij
�
` (I)

` (Q)

�n
2

= �
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

jhf; hI;�ij 2�t
n
2

. �
1X
t=1

vuuut X
I2D: `(I)=2�t`(Q)

I2Car(Q)

jhf; hI;�ij2 2�t(n�") = �
1X
t=1

2�t
n�"�

2

vuuut X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t jhf; hI;�ij2

� �

vuut 1X
t=1

2�t(n�"�)

vuuuut
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t jhf; hI;�ij2 = �

s
2�(n�"�)

1� 2�(n�"�)

vuuuut
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t jhf; hI;�ij2:

and so

A (Q) = �
X

I2D: `(I)<`(Q)
I2Car(Q)

jhf; hI;�ij
�
` (I)

` (Q)

�n
2

� �

vuuuut
1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t(n�2") jhf; hI;�ij2

if we take  = n� 2". It follows that
0@X
Q2D

1

jQjA (Q)
2
1Q

1A 1
2


Lp

. �



0BBB@X
Q2D

1

jQj

1X
t=1

X
I2D: `(I)=2�t`(Q)

I2Car(Q)

2�t(n�2") jhf; hI;�ij2 1Q

1CCCA
1
2


Lp

= �



0BBB@X
I2D

jhf; hI;�ij2
1X
t=1

1

jQj
X

Q2D: `(I)=2�t`(Q)
I2Car(Q)

2�t(n�2")1Q

1CCCA
1
2


Lp

� �


 X
I2D

jhf; hI;�ij2
1X
t=1

1

j2tIj2
�t(n�2")12tI

! 1
2


Lp

� �


 X
I2D

jhf; hI;�ij2

jIj

1X
t=1

2�2tn+2"t12tI

! 1
2


Lp

. �


 X
I2D

jhf; hI;�ij2

jIj (M1I)
2 2�2"2

! 1
2


Lp

. �


 X
I2D

jhf; hI;�ij2

jIj (Mr1I)
2

! 1
2


Lp

. �


 X
I2D

jhf; hI;�ij2

jIj 1I

! 1
2


Lp

� � kfkLp ;
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provided 1 < r = 2
2�2" =

1
1�" < p. Indeed,

1X
t=1

2�2tn+2"t12tI . (M1I)2
2�2"
2 = (Mr1I)

2
;

where the inequality follows from

1X
t=1

2�2tn+2"t12tI (x) �
1X
t=1

2�2tn+2"t12tI�2t�1I (x)

=
1X
t=1

2�2tn(1�
"
n )12tI�2t�1I (x) .

1X
t=1

M1I (x)
2(1� "

n ) 12tI�2t�1I (x) =M1I (x)
2(1� "

n ) ;

and the equality follows by de�nition of Mr and since 1I = (1I)
r, namely

(M1I)
2 2�2"2 =

�
(M (1I)

r
)
1
r

�2
= (Mr1I)

2
:

Case B (Q): Set � = 2�� . Note that the function squared in the second norm in (2.8) then satis�es

X
Q2D

1

jQjB (Q)
2
1Q (x) =

X
Q2D

1

jQj

0BBB@ X
I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

jhf; hI;�ij
1

��

�
` (Q)

` (I)

��+n
2

1CCCA
2

1Q (x)

=
1

�2�

X
Q2D

1

jQj
X

I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

X
I02D: `(Q)��`(I0)
Q\H �

2
(I0)6=;

jhf; hI;�ij jhf; hI0;�ij
�
` (Q)

` (I)

��+n
2
�
` (Q)

` (I 0)

��+n
2

1Q (x)

=
1

�2�
2

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
�

1

` (I) ` (I 0)

��+n
2 X
Q2D: `(Q)��`(I)

Q\H �
2
(I)6=;

` (Q)
2�
1Q (x)

� 1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
�

1

` (I) ` (I 0)

��+n
2

` (I)
2�

1X
t=�

X
Q2D: `(Q)=2�t`(I)

Q\H �
2
(I)6=;

1Q (x) 2
�t2�;

where for t � � and x 2 H �
2
(I), we have X

Q2D: `(Q)=2�t`(I)
Q\H �

2
(I)6=;

1Q (x) � 1;

so that

X
Q2D

1

jQjB (Q)
2
1Q (x) .

1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
�

1

` (I) ` (I 0)

��+n
2

` (I)
2�

1X
t=�

2�t2�1H �
2
(I) (x) :

Now recalling 2�t = `(Q)
`(I) , we have for t � �,

#
n
Q 2 D : dist (Q; @I) � ` (Q) = 2�t` (I) and Q \H �

2
(I) 6= ;

o
is
�
� �2tn if t � �
0 if 1 � t < �

:
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Our blanket assumption that � > n
2 shows that all of the geometric series appearing below are convergent.

Then we have

X
Q2Dgood

1

jQjB (Q)
2
1Q (x) . 1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
` (I)

n
2 ` (I 0)

n
2

�
` (I)

` (I 0)

�� 1X
t=�

2�t2�1H �
2
(I) (x)

. 1

�2�

X
I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
` (I)

n
2 ` (I 0)

n
2

�
` (I)

` (I 0)

��
2��2�

1� 2�2�1H �
2
(I) (x)

.
X

I;I02D and I�I0

jhf; hI;�ij jhf; hI0;�ij
` (I)

n
2 ` (I 0)

n
2

�
` (I)

` (I 0)

��
1H �

2
(I) (x) ;

which in turn equals,

X
I2D

1X
s=1

jhf; hI;�ijp
jIj`

���Df; h(�(s)I);�E���q���(s)I��
 

` (I)

`
�
�(s)I

�!� 1H�(I) (x)

=
X
I2D

1X
s=1

jhf; hI;�ij
jIj

1
2

���Df; h(�(s)I);�E������(s)I�� 12 2�s�1H�(I) (x)

=

 1X
s=1

2�s�

!X
I2D

jhf; hI;�ij
jIj

1
2

���Df; h(�(s)I);�E������(s)I�� 12 1H�(I) (x) ;

which is at most

 1X
s=1

2�s�

!vuutX
I2D

 
jhf; hI;�ij
jIj

1
2

!2
1H�(I) (x)

vuuutX
I2D

0@
���Df; h(�(s)I);�E������(s)I�� 12

1A2

1H�(�(t)I) (x) �
X
I2D

 
jhf; hI;�ij
jIj

1
2

!2
1H�(I) (x) :

By Lemma 20 we thus have

(2.10)


0@X
Q2D

1

jQjB (Q)
2
1Q

1A 1
2


Lp

.


0@X
I2D

 
jhf; hI;�ij
jIj

1
2

1H�(I) (x)

!21A 1
2


Lp

� Cp;n�
1

2(p�1) kfkLp :
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Case C (Q): We have,

X
Q2D

1

jQjC (Q)
2
1Q =

X
Q2D

1

jQj

��������
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i
D
h�I;�; hQ;�

E��������
2

1Q (x)

=
X
Q2D

1

jQj

0BBBB@
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

X
I2D: `(I0)�`(Q)��`(I0)

Q2Car(I0)

hf; hI;�i
D
h�I;�; hQ;�

E
hf; hI0;�i

D
h�I0;�; hQ

E
1CCCCA1Q (x)

�
X
Q2D

1

jQj

0BBBB@
X

I;I02D: I�I0 and `(I)�`(Q)��`(I0)
Q2Car(I)\Car(I0)

hf; hI;�i
D
h�I;�; hQ;�

E
hf; hI0;�i

D
h�I0;�; hQ;�

E
1CCCCA1Q (x)

=
X
Q2D

1

jQj

0BBBBBBB@
X

I;I02D: I�I0
Q2Car(I)\Car(I0)
`(I)�`(Q)��`(I0)

hf; hIi hf; hI0i hh�I ; hQi hh
�
I0 ; hQi

1CCCCCCCA
1Q (x) :

We �rst compute the diagonal sum restricted to I = I 0. Set

��;t (I) �
�
x 2 I : dist (x;H� (I)) � 2t�` (I)

	
; for 0 � t � �;

where we recall that � = 2�� , and note that the diagonal portion of the sum above equals

X
Q2D

1

jQj

0BB@ X
I2D: Q2Car(I)
`(I)�`(Q)��`(I)

jhf; hIij2
���Dh�I;�; hQ;�E���2

1CCA1Q (x) =X
I2D

jhf; hI;�ij2
X

Q2D: Q2Car(I)
`(I)�`(Q)��`(I)

���Dh�I;�; hQ;�E���2
jQj 1Q (x)

.
X
I2D

jhf; hI;�ij2
X

Q2D: Q2Car(I)
`(I)�`(Q)��`(I)

�2
�
`(Q)
`(I)

�n�2
` (Q)

n 1Q (x) = �2
X
I2D

jhf; hI;�ij2
X

Q2D: Q2Car(I)
`(I)�`(Q)��`(I)

1

` (I)
n�2

` (Q)
21Q (x)

� �2
X
I2D

jhf; hI;�ij2
1

` (I)
n�2

[�` (I) + dist (x;H� (I))]2
1I (x) =

X
I2D

jhf; hI;�ij2

jIj

0@ 1

1 +
dist(x;H�(I))

�`(I)

1A2

1I (x) ;

which can be written as

X
I2D

jhf; hI;�ij2

jIj

�X
t=0

1��;t (x)

0@ 1

1 +
dist(x;H�(I))

�`(I)

1A2

�
X
I2D

jhf; hI;�ij2

jIj

�X
t=0

2�2t1��;t(I) (x) :

Thus
X
Q2D

1

jQj

0BB@ X
I2D: Q2Car(I)
`(I)�`(Q)��`(I)

jhf; hI;�ij2
���Dh�I;�; hQ;�E���2

1CCA1Q (x)

Lp

.
�X
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1��;t(I) (x)


Lp

:
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From the estimate for term B in (2.10), with � replaced by 2t�, we obtain

X
I2D

jhf; hI;�ij2

jIj 1��;t(I) (x)


Lp

. Cp;n
�
2t�
� 1
2(p�1) kfkLp ;

and so altogether, the diagonal portion of
PQ2D

1
jQjC (Q)

2
1Q (x)


Lp
is at most

�X
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1��;t(I) (x)


Lp

.
�X
t=0

Cp;n2
�2t �2t�� 1

2(p�1) kfkLp

= �
1

2(p�1)

�X
t=0

Cp;n2
�t(2� 1

2(p�1) ) kfkLp = �
1

2(p�1)

�X
t=0

Cp;n2
�t 4(p�1)�1

2(p�1) kfkLp

= �
1

2(p�1)

�X
t=0

Cp;n2
�t 4p�52p�2 kfkLp � Cp;n

8><>:
�

1
2(p�1) kfkLp if p > 5

4

�2
�
log2

1
�

�
kfkLp if p = 5

4

�2 kfkLp if 1 < p < 5
4

:

Now we use the estimate
���Dh�I;�; hQ;�E��� . �

�
`(Q)
`(I)

�n
2�1

for Q 2 Car (I) and ` (Q) � �` (I), see the third

line of Lemma 19, to obtain

X
Q2D

1

jQj

��������
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i hh�I ; hQi

��������
2

1Q (x)

.
X

I;I02D: I�I0
jhf; hI;�ij jhf; hI0;�ij

X
Q2D: Q2Car(I)\Car(I0)

`(I)�`(Q)��`(I0)

���Dh�I;�; hQ;�E��� ���Dh�I0;�; hQ;�E��� 1jQj1Q (x)

. �2
X

I;I02D: I�I0
jhf; hI;�ij jhf; hI0;�ij

X
Q2D: Q2Car(I)\Car(I0)

`(I)�`(Q)��`(I0)

�
` (Q)

` (I)

�n
2�1�` (Q)

` (I 0)

�n
2�1 1

jQj1Q (x)

= �2
X

I;I02D: I�I0

jhf; hI;�ij jhf; hI0;�ijp
jIj
p
jI 0j

X
Q2Car(I)\Car(I0)
`(I)�`(Q)��`(I0)

` (I)

` (Q)

` (I 0)

` (Q)
1Q (x) :

At this point we observe that the conditions imposed on the cubes I and I 0 in the sum above are that
there exists a cube Q such that Q � I � I 0, Q 2 Car (I) \ Car (I 0), and ` (I) � ` (Q) � �` (I 0). It follows
from these conditions that

I 2 Car (I 0) and ` (I) � ` (I 0) � 1

�
` (I) = 2�` (I) :

Thus we can now pigeonhole the ratio of the lengths of I and I 0 by

` (I 0)

` (I)
= 2s; for 0 � s � �:
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With s �xed we have I 0 = �(s)I and

�2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I��

X
Q2Car(I)\Car(�(s)I)
`(I)�`(Q)��`(�(s)I)

` (I)

` (Q)

`
�
�(s)I

�
` (Q)

1Q (x)

= �2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I��

X
Q2Car(I)\Car(�(s)I)
`(I)�`(Q)�2s�`(I)

2s
�
` (I)

` (Q)

�2
1Q (x)

� 2s�2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I�� 2s

�
` (I)

2s�` (I) + dist (x;H2s� (I))

�2
1I (x)

= 2s�2
X
I2D

jhf; hI;�ij
���Df; h(�(s)I);�E���p
jIj
q���(s)I�� 2s

0@ 1

2s� +
dist(x;H2s�(I))

`(I)

1A2

1I (x)

=
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I (x) ;

where our sum is exactly like the diagonal portion with two exceptions, namely that I has been replaced by
�(s)I in the second factor, and � has been replaced by 2s� in the third factor. Thus we continue with,

X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I (x)

=
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
��sX
t=0

1�2s�;t(I) (x)

0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

�
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
��sX
t=0

2�2t1�2s�;t(I) (x) ;

since �2s�;t (I) = fx 2 I : dist (x;H2s� (I)) � 2t2s�` (I)g and dist (x;H2s� (I)) � ` (I).
Now we continue to proceed as in the diagonal case to obtain,

X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I


Lp

.
��sX
t=0

2�2t


X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I�� 1�2s�;t(I)


Lp

.
��sX
t=0

2�2t


vuutX
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I)

vuuutX
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

.
��sX
t=0

2�2t

�
X
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I) +
1

�

X
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

;
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for every choice of � 2 (0; 1). Thus it remains to estimate each of the terms

�

��sX
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I)


Lp

and
1

�

��sX
t=0

2�2t


X
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

;

and then minimize the sum over 0 < � < 1. But from (2.10), we have

��sX
t=0

2�2t

X
I2D

jhf; hI;�ij2

jIj 1�2s�;t(I)


Lp

. Cp;n (2
s�)

1
2(p�1) kfkLp ;

��sX
t=0

2�2t


X
I2D

���Df; h(�(s)I);�E���2���(s)I�� 1�2s�;t(I)


Lp

.
��sX
t=0

2�2t

X
I02D

jhf; hI0;�ij2

jI 0j 1��;t(I0)


Lp

. Cp;n�
1

2(p�1) kfkLp ;

since

��;t (I
0) �2s�;t (I) =

�
x 2 I : dist (x;H2s� (I)) � 2t2s�` (I)

	
�

�
x 2 I 0 : dist (x;H� (I 0)) � 2t�` (I 0)

	
= ��;t (I

0) :

Thus with � = 2�
s

4(p�1) , we obtain
X
I2D

jhf; hI;�ijp
jIj

���Df; h(�(s)I);�E���q���(s)I��
0@ 1

1 +
dist(x;H2s�(I))

2s�`(I)

1A2

1I


Lp

. �Cp;n (2
s�)

1
2(p�1) kfkLp +

1

�
Cp;n�

1
2(p�1) kfkLp

=

�
�2

s
2(p�1) +

1

�

�
Cp;n�

1
2(p�1) kfkLp = 2Cp;n2

s
4(p�1) 2�

�
2(p�1) kfkLp

� 2Cp;n2
� �
4(p�1) kfkLp = 2Cp;n�

1
4(p�1) kfkLp ;

since 0 � s � �. Finally we sum in s from 0 to � = log2
1
� to conclude that,

0@X
Q2D

1

jQjC (Q)
2
1Q

1A 1
2


Lp

. �
1

4(p�1) log2
1

�
kfkLp :

This �nishes the proof of (2.9) and hence the proof of Proposition 17. �

2.3.2. Surjectivity. The proof of Proposition 18 is very similar to that of the previous proposition in light of

the following equivalences. Using
���4�

I;�f
��� �Mdy

�
4�
I;�f

�
, together with the Fe¤erman-Stein vector-valued

maximal inequalities [FeSt] and the square function equivalence (2.1), shows that
 X
I2D

���4�
I;�f

���2! 1
2


Lp

�


 X
I2D

j4I;�f j2
! 1

2


Lp

�
X
I2D

4I;�f


Lp

= kfkLp :

We also have from the square function equivalence that
(2.11)
 X
I2D

�����4�
I;�

�tr
f

����2
! 1

2


Lp

=


 X
I2D

���Df; h�I;�EhI;����2
! 1

2


Lp

�
X
I2D

D
f; h�I;�

E
hI;�


Lp

=

X
I2D

�
4�
I;�

�tr
f


Lp

:
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Furthermore, from the de�nition
�
SD�
�tr
f =

P
I2D

D
f; h�I;�

E
hI;�, we then obtain

�SD� �tr f
Lp
�


0@X
Q2D

���4Q;�

�
SD�
�tr
f
���2
1A 1

2


Lp

=


0@X
Q2D

���D�SD� �� f; hQ;�EhQ;����2
1A 1

2


Lp

(2.12)

=


0@X
Q2D

1

jQj

�����
*X
I2D

D
f; h�I;�

E
hI;�; hQ;�

+�����
2
1A 1

2


Lp

=


0@X
Q2D

1

jQj

���Df; h�Q;�E���2
1A 1

2


Lp

:

Proof of Proposition 18. From (2.12) we have,

�SD� �tr f
Lp
�


0@X
Q2D

1

jQj

���Df; h�Q;�E���2
1A 1

2


Lp

=


0@X
Q2D

1

jQj

�����X
I2D

hf; hI;�i
D
hI;�; h

�
Q;�

E�����
2
1A 1

2


Lp

;

which we now compare to

SD� fLp �

0@X
Q2D

jhS�f; hQ;�ihQ;�j2
1A 1

2


Lp

=


0@X
Q2D

1

jQj

�����X
I2D

hf; hI;�i
D
h�I;�; hQ;�

E�����
2
1A 1

2


Lp

;

that was shown to be comparable to kfkLp in Proposition 17 above. The only di¤erence between the two
right hand sides is that the convolution appears with h�Q;� in the �rst norm, and with h

�
I;� in the second

norm. We now use the estimates in Lemma 19 just as in the proof of Proposition 17 above. Here is a sketch
of the details that is virtually verbatim that of those in the proof of Proposition 17. Recall that H� (I) is
de�ned in (2.4).
For convenience we �rst rewrite the estimates in Lemma 19 so as to apply directly to the inner productD
hI;�; h

�
Q;�

E
instead of

D
h�I;�; hQ;�

E
. This is accomplished by simply interchanging Q and I throughout:���Dh�Q;�; hQ;�E��� � 1 and

���Dh�Q;�; hQ0;�

E��� . �; for Q and Q0 siblings;(2.13) ���Dh�Q;�; hI;�E��� . �

�
` (Q)

` (I)

�n
2

; for Q 2 Car (I) ;

���Dh�Q;�; hI;�E��� . �

�
` (I)

` (Q)

�n
2�1

; for I 2 Car (Q) and ` (I) � �` (Q) ;

���Dh�Q;�; hI;�E��� . 1

��

�
` (I)

` (Q)

��+n
2

; for ` (I) � �` (Q) and I \H �
2
(I) 6= ;;D

h�Q;�; hI;�

E
= 0; in all other cases:

Now we have by the square function estimate (2.1),

�SD� �tr f
Lp
�


0@X
Q2D

�����X
I2D

hf; hI;�i
D
hI;�; h

�
Q;�

E
hQ;�

�����
2
1A 1

2


Lp

�


0@X
Q2D

���hf; hQ;�iDhQ;�; h�Q;�E���2 jhQ;�j2
1A 1

2


Lp

+O

0BB@

0B@X
Q2D

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

jhQj2

1CA
1
2


Lp

1CCA

�


0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

+O

0BB@

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

1Q

1CA
1
2


Lp

1CCA ;
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where for some Cp; cp > 0,

Cp kfkpLp �


0@X
Q2D

jhf; hQ;�ij2
1

jQj1Q

1A 1
2


p

Lp

=


0@X
Q2D

j4Q;�f j2
1A 1

2


p

Lp

� cp kfkpLp :

Thus we have for each Q 2 D,X
I2D: I 6=Q

hf; hI;�i
D
hI;�; h

�
Q;�

E
=

X
I2D: `(I)<`(Q)

I2Car(Q)

hf; hI;�i
D
hI;�; h

�
Q;�

E
+

X
I2D: `(I)>`(Q)
Q\H �

2
(I) 6=;

hf; hI;�i
D
hI;�; h

�
Q;�

E

+
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

hf; hI;�i
D
hI;�; h

�
Q;�

E
:

As a consequence of the estimates in (2.13), we have for each Q 2 D,������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������ .

��������
X

I2D: `(I)<`(Q)
I2Car(Q)

hf; hI;�i
D
hI;�; h

�
Q;�

E��������+
X

I2D: `(Q)��`(I)
Q\H �

2
(I) 6=;

jhf; hI;�ij
1

��

�
` (Q)

` (I)

��+n
2

+�
X

I2D: `(I)�`(Q)��`(I)
Q2Car(I)

jhf; hI;�ij
�
` (Q)

` (I)

�n
2

� A (Q) +B (Q) + C (Q) :

Altogether we have
0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

1Q

1CA
1
2


Lp

.


0@X
Q2D

1

jQjA (Q)
2
1Q

1A 1
2


Lp

(2.14)

+


0@X
Q2D

1

jQjB (Q)
2
1Q

1A 1
2


Lp

+


0@X
Q2D

1

jQjC (Q)
2
1Q

1A 1
2


Lp

:

We now claim that

(2.15)


0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2

1Q

1CA
1
2


Lp

. �
1
2p

�
log2

1

�

�
kfkLp :

With this established, and taking � > n
2 , we obtain just as in the proof of Proposition 17,

0B@X
Q2D

1

jQj

������
X

I2D: I 6=Q
hf; hI;�i

D
hI;�; h

�
Q;�

E������
2
1CA

1
2


Lp

� C�
1
2p

�
log2

1

�

�
kfkLp <

cp
2
kfkLp ;

with � > 0 su¢ ciently small. This then gives

Cp kfkLp �
�SD� �tr f

Lp
� cp kfkLp �

cp
2
kfkLp =

cp
2
kfkLp ;

which completes the proof of Proposition 18 modulo (2.15).
We prove (2.15) by estimating each of the three terms on the right hand side of (2.14) separately. These

three terms are handled exactly as in Proposition 17 except that the arguments for handling terms A and
C are switched, with term B handled the same as before. We leave the routine veri�cations to the reader,
and this �nishes our proof of Proposition 18. �
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2.3.3. Representation. Combining the two propositions above immediately gives the proof of Theorem 15,
as we now show.

Proof of Theorem 15. Fix a grid D in Rn. Combining the two propositions shows that SD� is a bounded
invertible linear map on Lp. Indeed, Proposition 17 shows that SD� is one-to-one and Proposition 18 shows

that SD� is onto. The boundedness of S
D
� is immediate from Proposition 17 and the boundedness of

�
SD�
��1

now follows from the Open Mapping Theorem.
Thus dropping the superscript D we have

f = S� (S�)
�1
f =

X
I2D

D
(S�)

�1
f; hI;�

E
h�I;� :

If we set e4�

If �


S�1� f; hI;�

�
h�I;� = 4

�
I

�
S�1� f

�
=


S�1� f; hI;�

� �
��`(I) � hI;�

�
;

then we have

f =
X
I2D

e4�

If =
X
I2D



S�1� f; hI;�

�
h�I;�; for f 2 Lp;

 X
I2D

��� e4�

If
���2! 1

2


Lp(�)

�


 X
I2D

��
S�1� f; hI;�
���2 1

jIj�
1I

! 1
2


Lp(�)

�
S�1� f


Lp(�)

� kfkLp(�) ;


 X
I2D

j4�
If j

2

! 1
2


Lp(�)

�


 X
I2D

jhf; hI;�ij2
1

jIj�
1I

! 1
2


Lp(�)

� kfkLp(�) ;

which shows in particular that
ne4�

I;�

o
I2D

is a frame for Lp. �

Notation 21. Since the frame
ne4�

I;�

o
I2D

will be used extensively in what follows, we drop the tilde and

write 4�
I;� instead of e4�

I;�, i.e. we rede�ne 4
�
I;�f to be

4�
If �

X
I2D



S�1� f; hI;�

�
h�I;�;

as was done in the Introduction. Thus we have inserted the bounded invertible operator S�1� into the inner
product above.

2.3.4. The smoothed pseudoprojections. The smoothed operators 4�
I;� are neither self-adjoint, projections

nor orthogonal, but come close as we now show. Recall that

4�
I;�f =

D
(S�;�)

�1
f; hI;�

E
h�I;� ; where h�I;� = �� � hI;� :

Lemma 22. With notation as above and � = �0 � �0, we have�
4�
I;�

�tr
g =

D
g; h�I;�

E�
(S�;�)

�1
�tr

hI;� ;

and �
4�
I;�

�2
= a�I;� 4

�
I;� and

��
4�
I;�

�tr�2
= a�I;�

�
4�
I;�

�tr
and

�
4�
I;�

��
4�
I;�

�tr
= b�I;�

e4�

I;� = b�I;�
e4�

I;�;

where e4�

I;�f =
D
f; h�I;�

E
h�I;� ; and

where a�I;� �
D
(S�;�)

�1
h�I;�; hI;�

E
� 1 and b�I;� �

D
(S�;�)

�2
hI;�; hI;�

E
� 1:

In particular we have

kfkLp �


0B@X
I2D

���Df; h�I;�E���2
jIj 1I

1CA
1
2


Lp

:
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Proof. The adjoint property follows fromD
4�
I;�f; g

E
=

DD
(S�;�)

�1
f; hI;�

E
h�I;�; g

E
=
D
h�I;�; g

EZ
(S�;�)

�1
f (x)hI;� (x) dx

=
D
h�I;�; g

EZ
f (x)

�
(S�;�)

�1
�tr

hI;� (x) dx

=

Z
f (x)

��
(S�;�)

�1
�tr

hI;� (x)
D
h�I;�; g

E�
dx =

�
f;
�
4�
I;�

�tr
g

�
:

The pseudoprojection property follows from�
4�
I;�

�2
f = 4�

I;�

�
4�
I;�f

�
=
D
(S�;�)

�1
�
4�
I;�f

�
; hI;�

E
h�I;�

=
D
(S�;�)

�1
nD
(S�;�)

�1
f; hI;�

E
h�I;�

o
; hI;�

E
h�I;� =

D
(S�;�)

�1
f; hI;�

ED
(S�;�)

�1
h�I;�; hI;�

E
h�I;�

=
D
(S�;�)

�1
h�I;�; hI;�

ED
(S�;�)

�1
f; hI;�

E
h�I;� =

D
(S�;�)

�1
h�I;�; hI;�

E
�
4�
I;� f = a�I;� 4

�
I;� f:

However, (S�;�)
�1 is close to the identity map by (1.14), so that using �� = ��0 � ��0 , we obtain

a�I;� =
D
(S�;�)

�1
h�I;�; hI;�

E
�
D
h�I;�; hI;�

E
+ o (1) =

D
��`(I) � hI;�; hI;�

E
+ o (1)

=
D
��0`(I) � hI;�; ��0`(I) � hI;�

E
+ o (1) =

h�0I;�2
L2
+ o (1) � khI;�k2L2 + o (1) � 1:

We also compute�
4�
I;�

��
4�
I;�

�tr
f =

�
(S�;�)

�1
�
4�
I;�

�tr
f; hI;�

�
h�I;�

=
D
(S�;�)

�1
nD
f; h�I;�

E
(S�;�)

�1
hI;�

o
; hI;�

E
h�I;� =

D
f; h�I;�

ED
(S�;�)

�2
hI;�; hI;�

E
h�I;�

=
D
(S�;�)

�2
hI;�; hI;�

ED
f; h�I;�

E
h�I;� =

D
(S�;�)

�2
hI;�; hI;�

E e4�

I;�f:

Finally,

f =
X
I2D

�
4�
I;�

�tr
f =

X
I2D

D
f; h�I;�

E h�
Str�;�

��1itr
hI;� =

h�
Str�;�

��1itrX
I2D

D
f; h�I;�

E
hI;�

shows that

kfkLp =
h�Str�;���1itrX

I2D

D
f; h�I;�

E
hI;�


Lp

�
X
I2D

D
f; h�I;�

E
hI;�


Lp

�


0B@X
I2D

���Df; h�I;�E���2
jIj 1I

1CA
1
2


Lp

�

3. The extension operator and oscillatory inner products

Given f 2 Lp (�n�1), we de�ne the extension operator E� localized to a cuto¤ function � (x) by

E�f (�) = F (f�n�1) (�) =
Z
Sn�1

f (z) e�iz��� (z) d�n�1 (z) :

If we use a one-to-one onto coordinate patch � : U ! P such that Supp� � P and U is a cube centered at
the origin in Rn�1 with dyadic side length, then we can write

E�f (�) =

Z
P
f (y) e�iy��� (y) d�n�1 (y) =

Z
U

f (� (x)) e�i�(x)��� (� (x))
dx

jdetr� (x)j

=

Z
U

h (x) e�i�(x)��� (x) dx

where

h (x) = f (� (Px)) and � (x) � � (� (x))

jdetr� (x)j :
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Since the map � : U ! P is a di¤eomorphism, we have

khkLp(U) � kfkLp(P) ;

and thus the extension operator E� : Lp (�n�1) ! Lp (Rn) is bounded if and only if the linear map T :
Lp (U)! Lp (Rn) is bounded, where T is de�ned by

Tf (�) �
Z
Bn�1(0; 12 )

K�;� (x; �) f (x) dx =

Z
Bn�1(0; 12 )

f (x) e�i�(x)��dx; for f 2 Lp
�
Bn�1

�
0;
1

2

��
;

where K�;� (x; �) � e�i�(x)��:

Now recall the (n� 1)-dimensional Alpert wavelets
n
hn�1I;�

o
I2G

on Rn�1 where G is a translation of the

standard dyadic grid on Rn�1 so that S 2 G and the origin is a vertex of �(2)G S (see also Notation 16), and
recall the smooth analogues hn�1;�I;� of these wavelets as constructed in Theorem 7 above. Then expand f by

the smooth Alpert reproducing formula f = S�;�S
�1
�;�f =

P
I2G

D
S�1�;�f; h

n�1
I;�

E
hn�1;�I;� . In addition recall the

n-dimensional Alpert wavelets
�
hnJ;�

	
J2D on R

n, where D is the standard grid on Rn, together with their
smooth analogues hn;�J;�. It will be important, at least in a technical sense when estimating part of the above
form in Section 7, to use the standard grid D on Rn which enjoys the property that the distance from the
origin to a cube J 2 D is at least the side length of J , if the origin is not a vertex of J .

To estimate the left hand side
TPI2G[U ]4

�
I;�f


Lp(�n)

of the truncated extension inequality (1.10) when

p = q, we will use in particular the vanishing moments up to order �� 1 of the wavelets hn�1;�I;� and hn;�J;�,Z
Rn�1

hn�1;�I;� (x)x�dx = 0; for 0 � j�j < �;Z
Rn
hn;�J;� (�) �

�d� = 0; for 0 � j�j < �;

along with estimates for oscillatory integrals in which the amplitudes involve smooth Alpert wavelets.
We will now estimate the oscillatory inner product

(3.1)
D
Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

�Z
Rn�1

e�i�(x)��hn�1;�I;� (x) dx

�
hn;�J;� (�) d�;

for (I; J) 2 G [U ] � D and plug the resulting estimates into the decomposition of the pairs (I; J) of dyadic
cubes in P given in (1.22) of the introduction, namely

P = P0 [
1[
m=0

Pm [ R [ X :

Thus P0 consists of pairs that are aligned radially away from the origin, Pm consists of pairs that are radially
staggered at angle roughly 2�m, R consists of pairs where I is �close�to the larger J , and X consists of pairs
in which the spherical projection of J is disjoint from � (2U).
Regarding P0, our intuition tells us that when the approximate wavelength 1

j�j of the exponential e
�ix��

does not exceed the depth 1
`(I)2

of the spherical �cap�� (I), and the side length ` (J) of the cube J supporting

hn;�J;� is approximately the distance of the sphere from the origin, namely 1, then we should not expect to
derive any cancellation from the presence of the exponential e�i�(x)��. Thus the only estimate on the inner
product in this case should be the trivial one, in which the oscillatory factor e�i�(x)�� is discarded,

(3.2)
���DThn�1;�I;� ; hn;�J;�

E��� � hn�1;�I;�


L1

hn;�J;�
L1
:

While this crude estimate will ultimately prove adequate in the case when ` (J) � 1, 1
`(I) .

1
dist(0;J) �

1
j�j .

1
`(I)2

and I and J are suitably aligned in the same direction, we must obtain improvements with geometric

decay in parameters jkj and d � 0 when

` (J) = 2k and
2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 ` (J) . 1:
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Moreover, when I and J are not suitably aligned, and there is insu¢ cient oscillation within the inner product,
we will need to invoke interpolation arguments with L2 and average L4 estimates when acting on certain
Alpert pseudoprojections.
When k > 0, we will gain geometically if we integrate by parts radially in � using the smoothness of

the wavelets hn;�J;�, and when k < 0, we will gain geometrically in jkj using the large number of vanishing
moments of hn;�J;�. When d > 0, we will use the classical asymptotic formula for the smooth surface carried

measure hn�1;�I;� with sharp bounds on the derivatives of hn�1;�I;� to derive gain. Regarding Pm, we will use in
addition a tangential integration by parts decay principle since the critical point of the phase no longer lies
in the support of the amplitude (hence stationary phase is not needed here). This suggests that we further
decompose the index set P0 as

P0 =
[
k2Z

1[
d=1

Pk;d0 ; where(3.3)

Pk;d0 �
(
(I; J) 2 P : J � K (I) , ` (J) = 2k, and 2d�1

` (I)
2 � dist (0; J) =

2d+1

` (I)
2

)
;

for k; d 2 Z, and the index set Pm of pairs as

Pm =
[
k2Z

1[
d2Z

Pk;dm ; where(3.4)

Pk;dm �
n
(I; J) 2 Pm : 2m+1I � U , ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
;

for k; d 2 Z and m 2 N. For m 2 N and d � 0, a di¤erent pigeonholing that respects resonance is required,
which we defer until needed in Section 8. Similarly, we defer further pigeonholing of R and X until needed.
In all of these index sets, the cubes I are restricted to G [U ].
Next we introduce a standard change of variable that simpli�es calculations, and then derive the well-

known asymptotic formula we will use with estimates on the remainder term8.

3.1. A change of variables. Write z = (z0; zn) for z 2 Rn, and set

(3.5) � (x; y) = � (x) � � (y) ; where � (x) =
�
x;

q
1� jxj2

�
and x 2 Rn�1;

and de�ne the variables (y; �) by

(3.6) y = ��1
�
�

j�j

�
=

�0

j�j and � = j�j ; i.e.
�
�0; �n

�
= � = �� (y) =

�
�y; �

q
1� jyj2

�
;

since then

�� (x; y) = j�j� (x) � � (y) = j�j� (x) � �j�j = �(x) � � :

We claim that

det
@
�
�0; �n

�
@ (y; �)

=
j�jn

�n
:

8These estimates are undoubtedly in the literature, but since the author was unable to �nd the precise form used here, we
include the classical arguments below.
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Indeed, we have (y; �) =
�
�0

j�j ; j�j
�
and � = �

�
y;

q
1� jyj2

�
, and so

@ (y1; :::; yn�1; �)

@
�
�1; :::; �n�1; �n

� =
2666664

@
@�1

�1
j�j � � � @

@�n�1

�1
j�j

@
@�n

�1
j�j

...
. . .

...
...

@
@�1

�n�1
j�j � � � @

@�n�1

�n�1
j�j

@
@�n

�n�1
j�j

@
@�1

j�j � � � @
@�n�1

j�j @
@�n

j�j

3777775

=

2666664
1
j�j �

�21
j�j3 � � � � �1�n�1

j�j3 � �1�n
j�j3

...
. . .

...
...

� �1�n�1
j�j3 � � � 1

j�j �
�2n�1
j�j3 � �n�1�n

j�j3
�1
j�j � � � �n�1

j�j
�n
j�j

3777775 =
1

j�j3

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 j�j

2 � � � �n�1 j�j
2

�n j�j
2

37775
where

det

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 j�j

2 � � � �n�1 j�j
2

�n j�j
2

37775

= j�j2 det

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 � � � �n�1 �n

37775 = j�j2 �n j�j2(n�1) = �n j�j
2n
;

by an induction on n 2 N.
Thus we have

det
@ (y1; :::; yn�1; �)

@
�
�1; :::; �n�1; �n

� =
1

j�j3n
det

26664
j�j2 � �21 � � � ��1�n�1 ��1�n

...
. . .

...
...

��1�n�1 � � � j�j2 � �2n�1 ��n�1�n
�1 j�j

2 � � � �n�1 j�j
2

�n j�j
2

37775
=

1

j�j3n
�n j�j

2n
=

�n
j�jn ;

as claimed. Hence

det
@
�
�1; :::; �n�1; �n

�
@ (y1; :::; yn�1; �)

=
j�jn

�n
=

�n

�

q
1� jyj2

=
�n�1q
1� jyj2

;

and the change of variable � ! (y; �) gives,D
Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

Z
Bn�1(0; 12 )

ei�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
Rn

Z
Bn�1(0; 12 )

e
i�(x)��

�
y;
p
1�jyj2

�
hn�1;�I;� (x)hn;�J;�

�
�

�
y;

q
1� jyj2

��
det

@
�
�1; :::; �n�1; �n

�
@ (y1; :::; yn�1; �)

dxdyd�

=

Z
R

Z
Bn�1(0; 12 )

Z
Bn�1(0; 12 )

ei��(x)��(y)hn�1;�I;� (x)hn;�J;�

�
�y; �

q
1� jyj2

�
�n

�

q
1� jyj2

dxdyd�

=

Z
R

Z
Bn�1(0; 12 )

Z
Bn�1(0; 12 )

ei��(x;y)'�I (x)
e �J (y; �) dxdyd�;
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where we are now using the convenient notation,

� (x; y) � � (x) � � (y) ;(3.7)

'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) � hn;�J;�

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

Note that if � 2 J , then (y; �) 2 �tanJ � �radJ .

3.2. Bounds for oscillatory integrals. Here we review the well known asymptotics for oscillatory inte-
grals, see e.g. [Ste2, Chapter VIII], paying close attention to the constants involved. We emphasize that the
results in this subsection are well known, but as we could not �nd in the literature the exact form of the
estimate for the remainder term that we use here, we reproduce many familiar arguments below.
We consider the oscillatory function Ia�;� : Rd � (0;1)! C given by

Ia�;� (y; �) �
Z
Rn
ei��(x;y)a� (x; y) dx;

de�ned for � > 0 and y 2 U where U is an open subset of Rd, and we call � (x; y) the phase and a� (x; y)
the amplitude of Ia�;�. We will follow a treatment of asymptotics for such oscillatory integrals given in a
Rice University blog [blogs.rice], but we will obtain a sharp estimate for amplitudes of the type that arise in
the smooth Alpert expansions.
We use three familiar preparatory lemmas. The �rst of these is the Morse Lemma, which will be applied to

the phase function � (x; y), in order to transform � into a nonsingular quadratic form in x at a nondegenerate
critical point in x. The second lemma gives high order decay bounds in the special case when there are no
critical points in x of the phase function that lie in the support of the amplitude, and the third calculates
the oscillatory integral for a quadratic form.

Lemma 23 (Morse Lemma). Suppose y0 2 U � Rd and x0 is a nondegenerate stationary point for � (�x; y0).
Then there exists a neighbourhood V � U of y0, a neighbourhood W of x0, a smooth function

X : V !W;

and a smooth function
	 : V !W � V ! Rn;

such that

(1) For every y 2 V , X (y) is the unique stationary point, which is also nondegenerate, for � (�x; y0) in
W .

(2) For every y 2 V , the map W ! Rn de�ned by x! 	(x; y) is a di¤eomorphism onto its image and

(3.8) � (x; y) = � (X (y) ; y) +
1

2
	 (x; y)

tr �
@2x� (X (y) ; y)

�
	(x; y) :

Furthermore,

(3.9) 	(X (y) ; y) = 0 and @x	(X (y) ; y) = Idn :

(3) Finally, we may take W = B (x0; a) for some small positive constant

a =
cn

maxj�j�3 sup(x;y)2(Supp a)�U j@�x� (x; y)j
;

where  > 0 satis�es infy
�
@2x� (X (y) ; y)

�
<  Idn.

Proof. For any y, the stationary points are the solutions of the equation 0 = @x� (x; y), and by the nondegen-
eracy of the critical point, and the Implicit Function Theorem, this equation uniquely de�nes x as a function
of y in some neighbourhood N of (x0; y0). Since in our application, � (x; y) is homogeneous of degree zero
in y, we may assume this here as well. Then

�
@2x� (X (y) ; y)

�
<  Idn�1 for some  > 0 depending only

on �, and so we may take N = B ((x0; y0) ; a
0) where a0 = c0n

maxj�j�3 sup(x;y)j@�x �(x;y)j
for some small positive

constant c0n, depending only on the dimension n.
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Now we take the Taylor expansion of � (x; y) in x about X (y) to obtain, upon noting that the �rst
derivatives in the Taylor expansion vanish at the critical point X (y),

� (x; y) = � (X (y) ; y) +
1

2
(x�X (y))trB (x; y) (x�X (y)) ;

where B (x; y) �
Z 1

0

(1� s) @2x� (sx+ (1� s)X (y) ; y) ds:

We now construct a matrix-valued function R (x; y) such that

	(x; y) � R (x; y) (x�X (y))

has the properties listed in (2) above. Indeed, this 	 will satisfy (3.8) provided

(3.10) R (x; y)
tr
@2x� (X (y) ; y)R (x; y)�B (x; y) = 0; for (x; y) 2 N :

We interpret the left hand side of (3.10) as a mapping fromMn (R)R�Rnx � Vy to Sn (R), whereMn (R) is
the set of n� n matrices and Sn (R) is the subset of symmetric matrices. Taking the di¤erential of the left
hand side of (3.10) with respect to the variable R and evaluated at the identity matrix Idn, we obtain that
the derivative map,

dR! (dR)
tr
@2x� (X (y) ; y) + @

2
x� (X (y) ; y) (dR) ;

is surjective, since whenever C 2 Sn (R) is symmetric,�
1

2

�
@2x� (X (y) ; y)

��1
C

�tr
@2x� (X (y) ; y) + @

2
x� (X (y) ; y)

�
1

2

�
@2x� (X (y) ; y)

��1
C

�
=
1

2
C +

1

2
C = C:

Thus by the Implicit Function Theorem again, there exists a smoothMn (R)-valued function R (x; y) de�ned
on some neighbourhood N0 � N of (x0; y0) that satis�es (3.10) everywhere that it is de�ned. Note that we

may takeN0 = B ((x0; y0) ; a
00) where where a00 = c00n

maxj�j�3 sup(x;y)j@�x �(x;y)j
. Possibly shrinking even more the

neighbourhood N0 to N1, completes the proof that there is a neighbourhood W of x0 such that x! 	(x; y)
is a di¤eomorphism from W onto its image, and that (3.8) holds, and that 	(X (y) ; y) = 0. Note that we
may take W = B (x0; a) where a = cn

maxj�j�3 sup(x;y)j@�x �(x;y)j
. The remaining assertion @x	(X (y) ; y) = Idn

is straightforward since,

@x jx=X(y) 	(X (y) ; y) = [@xR (x; y) (x�X (y)) +R (x; y)] jx=X(y)= R (X (y) ; y) = Idn ;

because we evaluated the di¤erential in R of the left hand side of (3.10) at the identity matrix Idn. �

Recall that

Ia�;� (y; �) �
Z
Rn
ei��(x;y)a� (x; y) dx;

where � 2 C1 (Rnx � Uy) and a� 2 C1 (Rnx � Uy). We will need the following estimate in the absence of
critical points for x! � (x; y).

Lemma 24. Suppose that the Rn-valued function @x� (x; y) is nonvanishing on (Supp a) � U . Then for
every N 2 N and compact K b U we have

sup
y2K

jIa;� (y; �)j � CN;K
1

�N

X
j�j�N

sup
y2K

k@�x a�kL1(Rn) ; for (y; �) 2 (Supp a)� U:

Proof. For any M 2 N we have

Ia�;� (y; �) =
Z
Rn

h@x� (x; y) ; @xiM ei��(x;y)�
i� j@x� (x; y)j2

�M a� (x; y) dx;
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and integrating by parts gives

sup
y2K

jIa�;� (y; �)j � sup
y2K

1

�N

Z
Rn

������
*
@x;

@x� (x; y)

j@x� (x; y)j2

+N
a� (x; y)

������ dx
� CN;K

1

�N

X
j�j�N

sup
y2K

Z
Rn
j@�x a� (x; y)j dx

= CN;K
1

�N

X
j�j�N

sup
y2K

k@�x a�kL1(Rn)�L1(Rn) :

�

The �nal preparatory lemma is the calculation of an oscillatory integral for a quadratic form.

De�nition 25. For a tempered distribution u 2 S (Rn), we have

bu (�) = F (u) (�) = Z
Rn
e�ix��u (x) d (x) :

Lemma 26. Let A 2Mn (Rn) be symmetric and nondegenerate with signature sgn (A). Then the tempered
distribution eix

trAx has Fourier transform given by,

(3.11) F
�
eix

trAx
�
(�) = �

n
2 ei sgn(A)

�
4
e�i

�trA�1�
4p

det (A)
:

Proof. The Fourier transform of a Gaussian function e�tjxj
2

is given by

F
�
e�tjxj

2
�
(�) = �

n
2
e�

j�j2
4t

t
n
2

; for all t > 0.

Now note that both sides of the above identity extend to analytic functions of t in the right half plane
ft 2 C : Re t > 0g. A standard limiting argument and orthogonal change of variables gives the formula
(3.11). �

3.3. The main oscillatory integral bound. Here is the main oscillatory integral bound.

Remark 27. In the application of stationary phase to bound the below form in Section 6, we won�t actually
use the oscillatory term ei��(X(y);y) in the asymptotic formula below, and instead we only need the estimates
of the modulus of Ia�;� (y; �) that follow from the asymptotic formula using

��ei��(X(y);y)�� = 1. The reason
for this is that when dealing with the below subform Bk;dbelow (f; g) with k; d � 0 large, we can �rst apply radial
integration by parts in the inner product, and second apply stationary phase to the resulting inner product
with a new amplitude. This way the geometric gain in k has been achieved without using the oscillatory term
ei��(X(y);y). If we were to instead apply stationary phase �rst, then we would need ei��(X(y);y) for integration
by parts afterward.

Remark 28. We will only use the case M = 0 of Theorem 29 in the proof of the probabilistic extension
conjecture in Theorem 5, which corresponds to the classical asymptotic formula with just the principal term
and remainder, but with a sharp estimate here on the remainder term when the amplitude is a smooth Alpert
wavelet.

We now give a more general treatment of stationary phase than we need, which might be of use elsewhere.

Theorem 29. Suppose that a� (x; y) 2 C1c
�
Rnx � Rdy

�
, y0 2 U � Rd, and that � (�x; y0) has exactly one

nondegenerate stationary point on the support of a at x0. Take V , W , X and 	 as in the Morse Lemma.
Then for every M 2 N, there is a positive constant CM depending on M and � such that,

Ia�;� (y; �) = Pa�;� (y; �) +
MX
`=1

P
(`)
a�;�

(y; �) +R
(M+1)
a�;�

(y; �) ;
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where

Pa�;� (y; �) =

�
2�

�

�n
2 ei[sgn[@

2
x�(X(y);y)]�4+��(X(y);y)]p
j@2x� (X (y) ; y)j

a� (X (y) ; y) ;

P
(`)
a�;�

(y; �) =
i`

(2�)
`
`!

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
��
@x

1

det @x	(x; y)

�
B (y)

�1 1

det @x	(x; y)
@x

�`
a� (x; y)

det [@x	(x; y)]
jx=X(y);

and

R
(M+1)
a�;�

(y; �) =

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
Z
F�1z

0B@
24
D
i@z; B (y)

�1
@z

E
2�

35M+1

f

1CA (�)RM+1

 
�i �

trB (y)
�1
�

2�

!
d�;

where

f (z; y; �) �
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

�� ;
and B (y) = @2x� (X (y) ; y), and X (y) is the unique stationary point of � (�x; y) in the support of a, as given
in the Morse Lemma, and �nally,

RM+1 (ib) =

Z 1

0

eitb (ib)
M+1 (1� t)M+1

(M + 1)!
dt; for b 2 R:

The remainder term satis�es the estimate,

(3.12) sup
y2V

���R(M+1)
a�;�

(y; �)
��� � CM�

�n
2�(M+1)

X
j�j��+2(M+1)

k@�x a�kL2(Rnx )�L1(Rd+1y;� )
;

where � =
�
n
2

�
is the smallest integer greater than n

2 , and if N > M +1+ n
2 , then we also have the alternate

bound,

(3.13) sup
y2V

���R(M+1)
a�;�

(y; �)
��� � CM�

�n
2�M�1

(Id�4x)
N
a�


L1(Rnx )�L1(Rny )

:

Proof. Take V , W , X and 	 as in the Morse Lemma, so that

� (x; y) = � (X (y) ; y) +
1

2
	 (x; y)

tr �
@2x� (X (y) ; y)

�
	(x; y) ; y 2 V:

Using Lemma 24 together with a partition of unity shows that we may assume a� (x; y) is supported in W
for all y 2 V . Thus a change of variables

z = 	(x; y) = 	y (x) ;

gives,

Ia�;� (y; �) =

Z
Rn
ei��(x;y)a� (x; y) dx =

Z
Rn
ei��(	

�1
y z;y) a�

�
	�1y z; y

�
det
�
(@x	)

�
	�1y (z) ; y

��dz
=

Z
Rn
e
i�

�
�(x0;y0)+	(	�1

y z;y)
tr @2x�(X(y);y)

2 	(	�1
y z;y)

�
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z) ; y

��dz
=

Z
Rn
e
i�

�
�(x0;y0)+z

tr @
2
x�(X(y);y)

2 z

�
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z) ; y

��dz
= ei��(x0;y0)

Z
Rn
ei�z

tr @
2
x�(X(y);y)

2 zf (z; y; �) dz;
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where

f (z; y; �) �
a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

�� :
Now write

(3.14) B (y) =
�
@2x�

�
(X (y) ; y) ;

and apply the Fourier transform F and its inverse F�1 in the variable z and its dual variable � to obtain

Ia�;� (y; �) = ei��(x0;y0)
Z
Rn
Fz
�
ei�z

tr B(y)
2 z
�
(�) F�1z (f (z; y)) (�) d�:

Using Lemma 26 with A = �
2B (y), we have,

Ia�;� (y; �) = ei��(x0;y0)
�
n
2 ei sgnB(y)

�
4q

det �2B (y)

Z
Rn
e�i

�trB(y)�1�
2� F�1z (f (z; y)) (�) d�

=

�
2�

�

�n
2 ei sgnB(y)

�
4 ei��(x0;y0)p

detB (y)

Z
Rn
e�i

�trB(y)�1�
2� F�1z (f (z; y)) (�) d�:

Next we use Taylor�s formula with integral remainder to obtain that for anyM > 0,

eib =
MX
`=0

(ib)
`

`!
+RM+1 (ib) ;

where

RM+1 (ib) =

Z 1

0

eitb (ib)
M+1 (1� t)M+1

(M + 1)!
dt and jRM+1 (ib)j �

jbjM+1

(M + 2)!

and so with

b = ��
trB (y)

�1
�

2�
;

we have

Ia�;� (y; �)�
�
2�

�

� d
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

Z
Rn

MX
`=0

i`

(2�)
`
`!
F�1z

�D
@trz B (y)

�1
@z

E`
f

�
(�) d�(3.15)

=

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
Z
Rn
F�1z

0B@
24
D
i@trz B (y)

�1
@z

E
2�

35M+1

f

1CA (�)RM+1

 
�i �

trB (y)
�1
�

2�

!
d�:

Finally, using the Fourier inversion formula
R
Rn F

�1 (g) (z) dz = g (0), together with the identities

	y (X (y)) = 	 (X (y) ; y) = 0;

	�1y (0) = X (y) ;

det @x	(X (y) ; y) = det Idn = 1;

from part (2) of the Morse Lemma, we obtainZ
Rn
F�1z

�D
@trz B (y)

�1
@z

E`
f

�
(�) d� =

D
@trz B (y)

�1
@z

E`
f (0) ; 0 � ` �M:

Now when ` = 0 we have

f (0) =
a�
�
	�1y (0) ; y

�
det
�
@x	

�
	�1y (0) ; y

�� = a� (X (y) ; y)

det [@x	(X (y) ; y)]
= a� (X (y) ; y) :

From the change of variable (x; y) ! (z; w) where z = 	(x; y) and w = y, the Jacobian matrix in block
form is,

@ (z; w)

@ (x; y)
=

�
@xz @yz
@xw @yw

�
=

�
@x	(x; y) @y	(x; y)

0n Idn

�
;
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and so�
@zx @wx
@zy @wy

�
=
@ (x; y)

@ (z; w)
=

�
@x	(x; y) @y	(x; y)

0n Idn

��1
=

1

det @x	(x; y)

�
Idn �@y	(x; y)
0n @x	(x; y)

�
:

Thus we have by the chain rule,�
@z
@w

�
=

�
@zx @zy
@wx @wy

��
@x
@y

�
=

1

det @x	(x; y)

�
Idn �@y	(x; y)
0n @x	(x; y)

�tr�
@x
@y

�
=

1

det @x	(x; y)

�
Idn 0n

�@y	(x; y) @x	(x; y)

��
@x
@y

�
=

1

det @x	(x; y)

�
@x

�@y	(x; y) @x + @x	(x; y) @y

�
;

i.e.,

(3.16) @z =
1

det @x	(x; y)
@x:

Thus when ` = 1 we haveD
@trz B (y)

�1
@z

E
f (0) =

 
@trz B (y)

�1
@z

a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z) ; y

��! (0)
=

 (�
@x

1

det @x	(x; y)

�tr
B (y)

�1 1

det @x	(x; y)
@x

)
a� (x; y)

det [@x	(x; y)]

!
jx=X(y)

= L (y; @x)
a� (x; y)

det [@x	(x; y)]
jx=X(y);

where

L (y; @x) �
�
@x

1

det @x	(x; y)

�tr
B (y)

�1 1

det @x	(x; y)
@x

is a second order di¤erential operator in x with coe¢ cients depending on both x and y. More generally, the
same calculation shows that for 0 � ` �M , we have,D
@z; B (y)

�1
@z

E`
f (0) =

0@(�@x 1

det @x	(x; y)

�tr
B (y)

�1 1

det @x	(x; y)
@x

)`
a� (x; y)

det [@x	(x; y)]

1A jx=X(y)

= L (y; @x)
` a� (x; y)

det [@x	(x; y)]
jx=X(y) :

Thus the identity (3.15), together with the bound
���gM+1

�
�i �

trB(y)�1�
2�

���� � 1
(M+1)! , implies that,���R(M+1)

a�;�
(y; �)

��� � CM�
�n

2�(M+1)

F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
RM+1


L1(Rn� )

(3.17)

� CM;n�
�n

2�(M+1)
X

j�j��+2(M+1)

k@�x a�kL2(Rnx )�L1(Rny ) ;

where in the last line we have used Cauchy-Schwarz, the derivative identities for F , and Plancherel�s theorem
with the smallest integer � =

�
n
2

�
greater than n

2 . Indeed,Z
Rn

���bh (�)��� d� =

Z
Rn

���bh (�)��� �1 + j�j2�� �1 + j�j2��� d�
�

�Z
Rn

����1 + j�j2�� bh (�)���2 d�� 1
2
�Z

Rn

�
1 + j�j2

��2�
d�

� 1
2

� Cm

�Z
Rn
j(Idn�4x)

�
h (x)j2 dx

� 1
2

;
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for the function

h (x) =
D
@z; B (y)

�1
@z

EM+1

f

=

��
@x

1

det @x	(x; y)

�
B (y)

�1 1

det @x	(x; y)
@x

�M+1
a� (x; y)

det [@x	(x; y)]
:

To prove the alternate bound (3.13), we use the estimate
���RM+1

�
�i �

trB(y)�1�
2�

���� . ��� �trB(y)�1�2�

���M+1

to

obtain, F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
RM+1


L1(Rn� )

� 1

(M + 1)!

F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
L1(Rn� )

.
�
1

�

�M+1 Z
Rn
j�j2(M+1) j(Fzf) (�)j d�;

where

(Fzf) (�) =

 
Fz

a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

��! (�) = Fz'y (�) ;
'y (z) �

a�
�
	�1y (z) ; y

�
det
�
(@x	)

�
	�1y (z)

�� :
From the estimate

��Fz'y (�)�� =

����Z
Rn
eix��'y (x) dx

���� =
������
Z
Rn

24 Id�4x

1 + j�j2

!N
eix��

35'y (x) dx
������

=
1�

1 + j�j2
�N ����Z

Rn
eix�� (Id�4x)

N
'y (x) dx

���� � (Id�4x)
N
'y


L1

1�
1 + j�j2

�N ;
we have for N > M + 1 + n

2 that�
1

�

�M+1 Z
Rn
j�j2M+2 j(Fzf) (�)j d� .

�
1

�

�M+1 (Id�4x)
N
'y


L1(Rnx )�L1(Rny )

Z
Rn

j�j2M+2�
1 + j�j2

�N d�
.
�
1

�

�M+1 (Id�4x)
N
'y


L1(Rnx )�L1(Rny )

.
�
1

�

�M+1 (Id�4x)
N
a�


L1(Rnx )�L1(Rny )

:

We conclude that,���R(M+1)
a�;�

(y; �)
��� � CM�

�n
2�(M+1)

F�1z �D
@z; B (y)

�1
@z

EM+1

f

�
gM+1


L1(Rn� )

� CM�
�(M+1+n

2 )
(Id�4x)

N
a�


L1(Rnx )�L1(Rny )

; for N > M + 1 +
n

2
:

�

Remark 30. The identity @x	(X (y) ; y) = Idn implies that det [@x	(X (y) ; y)] = 1. Thus for ` = 1 we
have

@x

�
1

det @x	(x; y)
B (y)

�1 1

det @x	(x; y)
@x

a� (x; y)

det [@x	(x; y)]

�
= B (y)

�1
n
�2 (det @x	(x; y))�3 @x det @x	(x; y) + @2x

h
(det [@x	(x; y)])

�1
a� (x; y)

io
;
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where @2x
h
(det [@x	(x; y)])

�1
a� (x)

i
is

2 (det [@x	(x; y)])
���3@x det @x	(x; y)��2 a� (x; y)

� (det [@x	(x; y)])�2 @2x det @x	(x; y) a� (x; y)� (det [@x	(x)])
�2
@x det @x	(x; y) @xa� (x; y)

� (det [@x	(x; y)])�2 @x det @x	(x; y) @xa� (x; y) + (det [@x	(x; y)])�1 @2xa� (x; y) ;

and so when we evaluate at x = X (y), we obtain that (det [@x	(x; y)])
�1
@2xa (x; y) equals @

2
xa (X (y) ; y),

and hence,

P(1)a;� (y; �) =
i`

(2�)
`
`!

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

n
@2xa (X (y) ; y) +O

�
k@xa�kL1(Rnx ) + ka�kL1(Rnx )

�o
:

Thus every gain of 1
� costs two derivatives of a� in x (ignoring the contribution from k@xa�kL1(Rnx ) +

ka�kL1(Rnx )), which dictates our de�nition of the parameter d in the subform (4.4) below.

Note that we can write the formula for P(`)a�;� (y; �) compactly as

(3.18) P
(`)
a�;�

(y; �) =

�
2�

�

�n
2 i`

(2�)
`
`!

ei[sgnB(y)
�
4+��(X(y);y)]

p
detB

��
L�1@xBL

�1@x
	` a (x; y)

detL

�
jx=X(y);

where

(3.19) L � @x	(x; y) and B � B (y) =
�
@2x�

�
(X (y) ; y) :

4. Starting the proof of the probabilistic extension conjecture

We must prove the truncated probabilistic extension inequality (1.9),

E�
2G

T
X

I2G[U ]

aI 4�
I;� f


Lp(�n)

� C kfkLp(B(0; 12 )) ; p >
2n

n� 1 :

However, we will instead begin by setting out to prove the much stronger truncated deterministic extension
inequality (1.10), T

X
I2G[U ]

4�
I;�f


Lp(�n)

� C kfkLp(B(0; 12 )) ;

and only when we run into di¢ culty proving this, will we resort to using expectation. Thus we begin by
considering its equivalent bilinear inequality������

*
T
X

I2G[U ]

4�
I;�f; g

+������ . kfkLp kgkLp0 :
Our initial splitting of the above bilinear form is modeled after that in two weight testing theory using

(1.22),*
T
X

I2G[U ]

4�
I;�f; g

+
=

X
(I;J)2G[U ]�D

D
T 4n�1;�

I;� f;4n;�
J;�g

E
(4.1)

=

8<: X
(I;J)2P0

+
X

(I;J)2R

+
csX
m=1

X
(I;J)2Pm

+
X

(I;J)2X

9=;DT 4n�1;�
I;� f;4n;�

J;�g
E

� Bbelow (f; g) + Babove (f; g) + Bdisjoint (f; g) + Bdistal (f; g) :

We further decomposed the pairs P0 and Pm in (3.3) and (3.4) according to the oscillation properties of the
inner product D

T 4n�1;�
I;� f;4n;�

J;�g
E
=
D
Thn�1;�I;� ; hn;�J;�

ED
(S�;�)

�1
f; hn�1I;�

ED
(S�;�)

�1
g; hnJ;�

E
;
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and we will continue to do this for R and X when needed below. we also will split both disjoint and distal
forms into upper and lower subforms in (8.1) and (8.2) in Section 8.

(1) The below form Bbelow (f; g) combines stationary phase with either integration by parts or moment
vanishing, and only its subform Bk;dbelow (f; g) for k; d � 0 requires the strict inequality p > 2n

n�1 .
Moreover, the subforms with d � 0 can be controlled by relatively simple arguments when p > 2n

n�1 .
(2) The above form Babove (f; g) is less critical and easier to handle in that it doesn�t use stationary

phase, and is in fact bounded for all 1 < p <1.
(3) The disjoint form Bdisjoint (f; g) is handled similarly in some places, and made easier in those places

due to the fact that stationary phase is not needed, because the critical point of the phase lies
outside the support of the amplitude. However, in those di¢ cult places where large numbers of inner
products are resonant, i.e. without either appropriate oscillation or smoothness, probability is used
in conjunction with an interpolation argument between L2 and L4 estimates.

(4) The upper distal form Bupperdistal (f; g) is handled as an extreme case of the upper disjoint form B
upper
disjoint (f; g)

in Section 8, and the lower distal form Blowerdistal (f; g) is bundled together with the lower disjoint form
Blowerdisjoint (f; g) and controlled using probability in Section 9.

We have ���DT 4n�1;�
I;� f;4n;�

J;�g
E
!

��� = ���DThn�1;�I;� ; hn;�J;�

E��� ���D�S��;���1 f; hn�1I;�

E��� ���D�S!�;���1 g; hnJ;�E���(4.2)

�

8<:
���DThn�1;�I;� ; hn;�J;�

E
!

���p
jIj jJ j

9=;
�Z

Rn�1

���4n�1;�
I;� f (x)

��� d� (x)��Z
Rn

���4n;�
J;�g (�)

��� d! (�)� ;
since Z

Rn�1

���4n�1;�
I;� f (x)

��� d� (x) =

Z
Rn�1

���D(S�;�)�1 f; hn�1I;�

E
hn�1;�I;�

��� d� (x)(4.3)

�
���D�S��;���1 f; hn�1I;�

E��� hn�1;�I;�


L1(�)

�
���D(S�;�)�1 f; hn�1I;�

E���pjIj;Z
Rn

���4n;�
J;�g (�)

��� d! (�) �
���D(S�;�)�1 g; hnJ;�E���pjJ j:

Thus we now turn to estimating the inner productD
Thn�1I;� ; h

n
J;�

E
=

Z
Rn

�Z
Rn�1

ei�(x)��hn�1;�I;� (x) dx

�
hn;�J;� (�) d�;

and then using these inner product estimates, we will bound the two bilinear forms Bbelow (f; g) and
Babove (f; g), along with some of the subforms of Bdisjoint (f; g) and Bdistal (f; g), namely those comprising
the upper disjoint and distal forms Bupperdisjoint (f; g) and B

upper
distal (f; g) (de�ned later).

In fact, if we denote by jBbelowj (f; g), jBabovej (f; g),
���Bupperdisjoint

��� (f; g) and jBupperdistal j (f; g) the forms Bbelow (f; g),
Babove (f; g), B

upper
disjoint (f; g) and B

upper
distal (f; g) with absolute values taken inside the sum of inner products, then

we will prove the following �deterministic�estimate in which probability plays no role.

Proposition 31. For p > 2n
n�1 we have

jBbelowj (f; g) + jBabovej (f; g) +
���Bupperdisjoint

��� (f; g) + jBupperdistal j (f; g) . kfkLp(Rn�1) kgkLp0 (Rn) :

Proof. This follows immediately from (6.1), (7.1), (8.6) and (8.7) below. �

Remark 32. Proposition 31 shows that the Fourier extension conjecture (1.1) with p = q is equivalent to
boundedness of the lower disjoint and distal forms,��Blowerdisjoint (f; g) + B

lower
distal (f; g)

�� . kfkLp(Rn�1) kgkLp0 (Rn) :
Note that the small positive constant � in the construction of the smooth Alpert wavelets is �xed through-

out the estimates below, and so powers of 1� depending on n and � will often be absorbed into the notation
of approximate inequality ..
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Notation 33. In an inner product of the form hT';  i, we refer to ' as the amplitude function, and to  
as the pairing function.

4.1. Pigeonholing into bilinear subforms. Recall the decomposition (with bounded overlap) of the pairs
(I; J) 2 G [U ]�D of dyadic cubes introduced in (1.22),

G [U ]�D = P0 [
1[
m=0

Pm [ R [ X ;

where

P0 � f(I; J) 2 G [U ]�D : �tan (J) � � (CpseudoI)g ;
Pm �

�
(I; J) 2 G [U ]�D : 2m+1I � U and �tan (J) � �

�
2m+1CpseudoI

�
n � (2mCpseudoI)

	
; m 2 N ;

R � f(I; J) 2 G [U ]�D : � (I) � �tan (CpseudoJ)g :
In treating the below form Bbelow (f; g), we will consider the inner productsD
T� 4n�1;�

I;� f;4n;�
J;�g

E
=

Z
Rn

Z
Rn�1

4n�1;�
I;� f (x) e�i�(x)��dx4n;�

J;� g (�) d� =
D
T�h

n�1;�
I;� ; h�;!J;�

ED
f; hn�1;�I;�

ED
g; hn;�J;�

E
;D

T�h
n�1;�
I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

hn�1;�I;� (x) e�i�(x)��dxhn;�J;� (�) d�;

for (I; J) 2 P0 � G [U ]�D, and as in (3.3), we further decompose the index set P0 of pairs by pigeonholing
the side length of J and its distance from the origin relative to 1

`(I)2
, the reciprocal of the �depth�of the

spherical �cap�� (I):

P0 =
[
k2Z

1[
d2Z

Pk;d0 ; where

Pk;d0 �
n
(I; J) 2 P0 : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
,

for k; d 2 Z:
Then we de�ne the associated subforms,

(4.4) Bk;dbelow (f; g) �
X

(I;J)2Pk;d
0

D
TSh

n�1;�
I;� ; hn;�J;�

E
:

We decompose the disjoint form Bdisjoint (f; g) into subforms B
k;d;m
disjoint (f; g) similar to that done for the

below form Bbelow (f; g). Recall that in (3.4), for each m � 0, we decomposed the index set
Pm �

�
(I; J) 2 G [U ]�D : 2m+1I � U and �tan (J) � �

�
2m+1CpseudoI

�
n � (2mCpseudoI)

	
; 1 � m � cs ;

of pairs by pigeonholing the side length of J and its distance from the origin relative to 1
`(I)2

, the reciprocal

of the �depth�of the spherical set � (I):

Pm =
[
k2Z

1[
d2Z

Pk;dm ; where

Pk;dm �
n
(I; J) 2 Pm : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
,

for k; d 2 Z;
and now we de�ne the disjoint subforms,

(4.5) Bk;d;mdisjoint (f; g) �
X

(I;J)2Pk;d
m

D
T 4n�1;�

I;� f;4n;�
J;�g

E
:

We point out that in those inner products in the disjoint form with resonance, such as when k = 0 and
m = �d, we need analogues for smooth Alpert wavelets of the traditional L2 and L4 estimates averaged over
involutive smooth Alpert multipliers. We then write

Bupperdisjoint (f; g) �
X
k2Z

X
d�0

X
m2N

Bk;d;mdisjoint (f; g) and B
lower
disjoint (f; g) �

X
k2Z

X
d<0

X
m2N

Bk;d;mdisjoint (f; g) :
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We defer the analogous pigeonholed decompositions for the above form Babove (f; g) and the distal form
Bdistal (f; g) until needed. Now we turn to the four principles of decay used on the smooth Alpert inner

products
D
Thn�1;�I;� ; hn;�J;�

E
, followed in the next subsection with the interpolation estimates.

4.2. Decay principles. We introduce four di¤erent principles of decay in the oscillatory kernel of the Fourier
transform, namely

(1) radial integration by parts,
(2) moment vanishing of smooth Alpert wavelets (for both hn�1;�I;� and hn;�J;�),
(3) stationary phase of oscillatory integrals,
(4) and tangential integration by parts.

These four principles of decay will be used as building blocks for compound principles of decay, which are
obtained by iterating the exact formulas for each principle, before taking absolute values inside the resulting
integrals, in order to obtain estimates. These estimates are then used with square function techniques as in
[SaWi] to bound the three forms Bbelow (f; g), Bdisjoint (f; g) and Babove (f; g). However, in order to handle
resonant subforms of Bdisjoint (f; g), we require an additional decay principle involving interpolation of L2

and L4 estimates for smooth Alpert pseudoprojections, that is described in the next subsection.
Our baseline is the following rather trivial L1 estimate, which we refer to as the crude estimate,���DThn�1;�I;� ; hn;�J;�

E��� �
hn�1;�I;�


L1(�)

hn;�J;�
L1
�
p
jIj jJ j ;(4.6) ���DT 4n�1;�

I;� f;4n;�
J;�g

E
!

��� �
4n�1;�

I;� f

L1

4n;�
J;�g


L1
�
p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� ;
where we have used (4.3) at the end of the second line.

4.2.1. Radial integration by parts. First we improve upon the crude estimate (4.6) when (I; J) 2 P k;00 with
k > 0, i.e. ` (J) = 2k, namely we show that���DThn�1;�I;� ; hn;�J;�

E��� � CN2
�kN

hn�1;�I;�


L1

hn;�J;�
L1
� 2�kN

p
jIj jJ j ;(4.7) ���DT 4n�1;�

I;� f;4n;�
J;�g

E��� � CN2
�kN

4n�1;�
I;� f


L1

4n;�
J;�g


L1
� 2�kN

p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� :
To see this, recall the change of variables (3.6) made earlier,D

Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

ei�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)'�I (x)
e �J (y; �) dxdyd�;

where

� (x; y) � � (x) � � (y) ;
'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) � hn;�J;�

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

We use the formula �
1

� (x; y)
@�

�N
ei��(x;y) = ei��(x;y);

to obtain the equality,

(4.8)
D
Thn�1;�I;� ; hn;�J;�

E
=

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)

� (x; y)
N
'�I (x) @

N
�
e �J (y; �) dxdyd�;
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which can then be estimated by���DThn�1;�I;� ; hn;�J;�

E��� . k'�IkL1 Z
R

Z
Rn�1

���@N� e �J (y; �)��� dyd�(4.9)

. k'�IkL1
Z
R

Z
Rn�1

���@N� e �J (y; �)��� �min� 1

�` (J)
;
1

�

��N
dyd�

�
�

1

�` (J)

�N
k'�IkL1

@N� e �J
L1
� 2�kN k'�IkL1

@N� e �J
L1
� 2�kN

p
jIj jJ j;

which gives both lines in (4.7).

4.2.2. Vanishing moments of smooth Alpert wavelets. Now we improve upon the crude estimate (4.6) when
(I; J) 2 P k;00 with k < 0, i.e. ` (J) = 2k, namely we show that���DThn�1;�I;� ; hn;�J;�

E��� � C�2
�jkj�

hn�1;�I;�


L1

hn;�J;�
L1
� 2�jkj�

p
jIj jJ j ;(4.10)���DT 4n�1;�

I;� f;4n;�
J;�g

E
!

��� � C�2
�jkj�

4n�1;�
I;� f


L1

4n;�
J;�g


L1
� 2�jkj�

p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� :
For any entire function f , Taylor�s formula with integral remainder applied to t! f (tz) gives,

f (z) =
��1X
`=0

1

`!

d`

dt`
f (tz) jt=0 +

Z 1

0

�
d�

dt�
f (tz)

�
(1� t)�

�!
dt

=
��1X
`=0

1

`!
f (`) (0) z` +

Z 1

0

f (�) (tz) z�
(1� t)�

�!
dt;

which shows that for any � 2 N and b 2 R, we have

(4.11) eib =
��1X
`=0

(ib)
`

`!
+R� (ib) ;

where

(4.12) R� (ib) =

Z 1

0

eitb (ib)
� (1� t)�

�!
dt and jR� (ib)j �

jbj�

(�+ 1)!
:

We also have ��@`bR� (ib)�� . jbj��`

(�+ 1)!
; for 0 � ` < �;(4.13)

@`bR� (ib) = @`be
ib = i`eib; for ` � �:

Now let cJ denote the center of the cube J and write,

e�i�(x)�� = e�i�(x)�cJ e�i�(x)�(��cJ ) = e�i�(x)�cJ

(
��1X
`=0

(�i� (x) � (� � cJ))`

`!
+R� (�i� (x) � (� � cJ))

)
:

Note that

e�i�(x)�cJR� (�i� (x) � (� � cJ)) =
Z 1

0

e�i�(x)�cJ e�it�(x)�(��cJ ) (�i� (x) � (� � cJ))�
(1� t)�

�!
dt

Since hn;�J;� has vanishing moments up to order less than �, we obtainD
Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

e�i�(x)��hn�1;�I;� (x) dxhn;�J;� (�) d�(4.14)

=

Z
Rn�1

e�i�(x)�cJhn�1;�I;� (x)

(Z
Rn

"
��1X
`=0

(�i� (x) � (� � cJ))`

`!
+R� (�i� (x) � (� � cJ))

#
hn;�J;� (�) d�

)
dx

=

Z
Rn�1

e�i�(x)�cJhn�1;�I;� (x)

�Z
Rn
R� (�i� (x) � (� � cJ))hn;�J;� (�) d�

�
dx:
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From the bound for R� in (4.12) with b = �� (x) � (� � cJ), we have���DThn�1;�I;� ; hn;�J;�

E��� �
Z ���hn�1;�I;� (x)

��� Z
Rn

j� (x) � (� � cJ)j�

(�+ 1)!

���hn;�J;� (�)��� d�dx(4.15)

. ` (J)
� k'�IkL1 k 

�
JkL1 � 2

�jkj�pjIj jJ j:
4.2.3. Stationary phase with bounds. Now we improve upon the crude estimate (4.6) when (I; J) 2 P 0;d0 with
d � 0, i.e. J � K (I), ` (J) = 1, and ` (I)2 dist (0; J) � 2d, namely we show,���DThn�1;�I;� ; hn;�J;�

E��� . 2�dn�12  
1 + 2�d

 
1

` (I)
2

!�!p
jIj jJ j ;(4.16)

���DT 4n�1;�
I;� f;4n;�

J;�g
E
!

��� . 2�dn�12  
1 + 2�d

 
1

` (I)
2

!�!p
jIj jJ j

���Df; hn�1;�I;�

ED
g; hn;�J;�

E��� ;
where 0 < � � 1. For this, recall the change of variables in (3.6) and (3.7),D

Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

ei�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
R

Z
Rn�1

�Z
Rn�1

ei��(x;y)'�I (x) dx

� e �J (y; �) dyd�;
where

� (x; y) � � (x) � � (y) ;
'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) �  �J

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

Applying Theorem 29 with n replaced by n � 1 and a� (x; y) equal to '�I (x), shows that the oscillatory
integral

I'�I ;� (y; �) �
Z
Rn�1

ei��(x;y)'�I (x) dx;

satis�es

I'�I ;� (y; �) = P'�I ;� (y; �) +
MX
`=1

P
(`)

'�I ;�
(y; �) +R

(M+1)

'�I ;�
(y; �) ;

where

(4.17) P'�I ;� (y; �) =

�
2�

�

�n�1
2 ei[sgn[@

2
x�(X(y);y)]�4+��(X(y);y)]p

jdetB (y)j
'�I (X (y)) ;

and for 1 � ` �M ,

P
(`)

'�I ;�
(y; �) =

i`

(2�)
`
`!

�
2�

�

�n
2 ei[sgnB(y)

�
4+��(X(y);y)]p

detB (y)

�
��
@x

1

det @x	(X (y) ; y)

�
B (y)

�1 1

det @x	(X (y) ; y)
@x

�`
'�I (X (y))

det [@x	(X (y) ; y)]
;

and

R
(M+1)

'�I ;�
(y; �) =

�
2�

�

�n�1
2 ei[sgnB(y)

�
4+��(X(y);y)]p

jdetB (y)j

�
Z
F�1z

0B@
24
D
i@z; B (y)

�1
@z

E
2�

35M+1

f

1CA (�) gM+1

 
�i �

trB (y)
�1
�

2�

!
d�;
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and where B (y) = @2x� (X (y) ; y), and X (y) is the unique stationary point of � (�x; y) in the support of a,
as given in the Morse Lemma, and � =

�
n
2

�
is the smallest integer greater than n

2 , and �nally gM+1 (b) =
1
M !

R b
0
et (b� t)M dt for b 2 C. Thus at this point we have the formula,D

Thn�1;�I;� ; hn;�J;�

E
=

Z
R

Z
Rn�1

�Z
Rn�1

ei��(x;y)hn�1;�I;� (x) dx

� b �J (y; �) dyd�(4.18)

=

Z
R

Z
Rn�1

I'�I ;� (y; �)
e �J (y; �) dyd�

In the case � (x; y) � � (x) � � (y) we have X (y) = y and

B (y) = @2x� (x) � � (y) jx=y= @2x

q
1� jxj2 jx=y

q
1� jyj2

=

0B@� 1q
1� jxj2

Idn�1�
xxtr�

1� jxj2
� 3
2

jx=y

1CAq1� jyj2
= � Idn�1�

yytr

1� jyj2
;

so that sgnB (y) = � (n� 1) and

detB (y) = det

26666664
�1� y21

1�jyj2 � y1y2
1�jyj2 � � � �y1yn�1

1�jyj2

� y2y1
1�jyj2 �1� y22

1�jyj2 �y2yn�1
1�jyj2

...
. . .

...

�yn�1y1
1�jyj2 �yn�1y1

1�jyj2 � � � �1� y2n�1
1�jyj2

37777775

= det
1

1� jyj2

266664
�1 + jyj2 � y21 � y1y2

1�jyj2 � � � �y1yn�1
�y2y1 �1 + jyj2 � y22 �y2yn�1
...

. . .
...

�yn�1y1 �yn�1y1 � � � �1 + jyj2 � y2n�1

377775 = (�1)n�1

1� jyj2
;

by induction on n.
In particular then, from (3.9) and the above calculation, we have 	(X (y) ; y) = 0, � (X (y) ; y) and

@x	(X (y) ; y) = Idn and so

Phn�1;�I;� ;� (y; �) =

�
2�

�

�n�1
2

ei[�
(n�1)�

4 +�]
q
1� jyj2'�I (y) ;

which can be written in the variable � =
�
�y; �

q
1� jyj2

�
as

Phn�1;�I;� ;� (�) =

�
2�

j�j

�n�1
2 �n
j�je

i(j�j� (n�1)�
4 )hn�1;�I;�

�
�0

j�j

�
; �0 =

�
�1; :::; �n�1

�
:

We compute that for J 2 K (I) and ` (I)2 dist (0; J) � 2d,���DPhn�1;�I;� ;�; h
n;�
J;�

E��� = ����Z
Rn
Phn�1;�I;� ;� (�)h

n;�
J;� (�) d�

���� =
�����
Z
Rn

�
2�

j�j

�n�1
2 �n
j�je

i(j�j� (n�2)�
4 )hn�1;�I;�

�
�0

j�j

�
hn;�J;� (�) d�

�����
.

Z
Rn

�
1

dist (0; J)

�n�1
2
����hn�1;�I;�

�
�0

j�j

����� ���hn;�J;� (�)��� d� � � 1

dist (0; J)

�n�1
2
Z
Rn

1p
jIj
1I

�
�0

j�j

�
1p
jJ j
1J (�) d�

�
�

1

dist (0; J)

�n�1
2 1p

jIj jJ j
jJ j =

 
1

` (I)
2
dist (0; J)

!n�1
2 p

jIj jJ j . 2�dn�12
p
jIj jJ j:
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The intermediate terms P(`)
'�I ;�

(y; �) can be estimated in a similar way.

Next we estimate the inner product with the error term R
(M+1)

hn�1;�I;� ;�
using the bound (3.13),����R(M+1)

hn�1;�I;� ;�
(y; �)

���� � CM�
�n�1

2 �M�1
(Id�4x)

N
hn�1;�I;�


L1(Rn�1x )�L1(Rny�1)

� CM�
�n�1

2 �M�1 1

` (I)
2N

p
jIj;

for N > 1 + n�1
2 , to obtain �����R(M+1)

hn�1;�I;� ;�
; hn;�J;�

����� = ����Z
Rn
R
(M+1)

hn�1;�I;� ;�
(�)hn;�J;� (�) d�

����(4.19)

.
�

1

dist (0; J)

�n�1
2 +1

 
1

` (I)
2

!Np
jIj jJ j � 2�d(

n�1
2 +1)

 
1

` (I)
2

!�p
jIj jJ j;

where � = N � n+1
2 > 0.

Adding these estimates gives,���DThn�1;�I;� ; hn;�J;�

E��� . ( MX
`=0

2�d(
n�1
2 +`) + 2�d(

n�1
2 +M+1)

 
1

` (I)
2

!�)p
jIj jJ j;

which completes the proof of (4.16). Since N � n+1
2 2 1

2Z, we may assume 0 < � � 1.

4.2.4. Tangential integration by parts. Finally, we improve on the crude estimate (4.6) in the case k = 0,
d � 0 and m 2 N using a tangential integration by parts as our last principle of decay, where the supports
of I and ��1 (�tanJ) are separated by at least ` (I). Let (I; J) 2 P0;dm with d � 0, i.e.

dist (�tanJ; I) � 2m` (I) ; ` (J) = 1; and
2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 :

Recall again the change of variable in (3.6) and (3.7),D
Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

e�i�(x)��hn�1;�I;� (x)hn;�J;� (�) dxd�

=

Z
R

Z
Rn�1

Z
Rn�1

e�i��(x;y)'�I (x)
e �J (y; �) dxdyd�;

where

� (x; y) � � (x) � � (y) ;
'�I (x) � hn�1;�I;� (x) and  �J (�) = hn;�J;� (�) ;e �J (y; �) �  �J

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

:

Here the supports of �tanJ and I are separated by a distance of approximately 2m` (I), and ` (�tanJ) . ` (I),
and this suggests we should integrate by parts in the variables x and y.
So let yJ = ��1 (�tancJ) and v =

yJ�cI
jyJ�cI j 2 S

n�2 be the unit vector in the direction of yJ � cI , which is

close to the direction of y � x for x 2 I and y = ��1 (�tan�) with � 2 J . Consider the directional partial
derivative Dx

v = v � @@x , and note that
Dx
v� (x; y) = (Dv�) (x) � � (y) :

Since (Dv�) (x) is perpendicular to � (x) in Rn, we have the estimate
jDx

v� (x; y)j � jx� yj ; x 2 I; � 2 J:
Now we compute

Dx
ve
�i��(x;y) = �i�e�i��(x;y)Dx

v� (x; y) = �i�e�i��(x;y) (Dv�) (x) � � (y) ;
and so �

1

�i� (Dv�) (x) � � (y)
Dx
v

�N
e�i��(x;y) = e�i��(x;y);
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which gives, D
Thn�1;�I;� ; hn;�J;�

E
(4.20)

=

Z
R

Z
Rn�1

Z
Rn�1

(�
1

�i� (Dv�) (x) � � (y)
Dx
v

�N
ei��(x;y)

)
'�I (x)

e �J (y; �) dxdyd�
= iN

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)

(�
Dx
v

1

(Dv�) (x) � � (y)

�N)
'�I (x)

e �J (y; �) dxdy d�
�N

:

This integral can be estimated by���DThn�1;�I;� ; hn;�J;�

E��� . Z
R

Z
Rn�1

Z
Rn�1

�����
�
Dx
v

1

(Dv�) (x) � � (y)

�N
'�I (x)

����� 1�N
���e �J (y; �)��� dxdyd�;

where we have the following pointwise estimates for N = 0 and N = 1,

j'�I (x)j .
1p
jIj
;

and

����Dx
v

1

(Dv�) (x) � � (y)
'�I (x)

���� 1� . j@x'�I (x)j
� j(Dv�) (x) � � (y)j

+
j'�I (x)j

���D2
v�
�
(x) � � (y)

��
� j(Dv�) (x) � � (y)j2

.
1

�`(I)
1p
jIj

� jx� yj +
1p
jIj

� jx� yj2
.

1
�

1p
jIj

�2m` (I) ` (I)
+

1p
jIj

� (2m` (I))
2

. 1

�2m` (I)
2

1p
jIj
= 2�m

1

dist (0; J) ` (I)
2

1p
jIj
:

We claim that by induction on N we have

(4.21)
1

�N

�����
�
Dx
v

1

(Dv�) (x) � � (y)

�N
'�I (x)

����� . 2�Nm
 

1

dist (0; J) ` (I)
2

!N
1p
jIj
:

For simplicity, we illustrate the inductive step in the case N = 2, and compute

Dx
v

1

(Dv�) (x) � � (y)
Dx
v

1

(Dv�) (x) � � (y)
'�I (x)

= Dx
v

 
Dx
v'

�
I (x)

[(Dv�) (x) � � (y)]2
�
'�I (x)

�
D2
v�
�
(x) � � (y)

[(Dv�) (x) � � (y)]3

!

=
(Dx

v)
2
'�I (x)

[(Dv�) (x) � � (y)]2
� 3

Dx
v'

�
I (x)

�
D2
v�
�
(x) � � (y)

[(Dv�) (x) � � (y)]3

�
'�I (x)

�
D3
v�
�
(x) � � (y)

[(Dv�) (x) � � (y)]3
+ 3

'�I (x)
��
D2
v�
�
(x) � � (y)

�2
[(Dv�) (x) � � (y)]4

;

which gives,

1

�2

�����
�
Dx
v

1

(Dv�) (x) � � (y)

�2
'�I (x)

����� . 1

�2

0BB@
�

1
�`(I)

�2
1p
jIj

jx� yj2
+

�
1

�`(I)

�
1p
jIj

jx� yj3
+

1p
jIj
jx� yj

jx� yj3
+

1p
jIj

jx� yj4

1CCA
. 1

�2

 
1

22m` (I)
4 +

1

23m` (I)
4 +

1

24m` (I)
4

!
1p
jIj

. 1

�2
1

22m` (I)
4

1p
jIj
= 2�2m

 
1

dist (0; J) ` (I)
2

!2
1p
jIj
;

which is the case N = 2 of (4.21). The general case is similar.
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The estimate (4.21) leads to the inner product estimate,���DThn�1;�I;� ; hn;�J;�

E���(4.22)

�
Z
R

Z
Rn�1

Z
Rn�1

1

�N

�����
(�

Dx
v

1

(Dv�) (x) � � (y)

�N)
'�I (x)

����� ���b �J (y; �)��� dxdyd�
�

Z
R

Z
Rn�1

Z
Rn�1

2�Nm

 
1

dist (0; J) ` (I)
2

!N
1p
jIj

���b �J (y; �)��� dxdyd�
� 2�Nm

 
1

dist (0; J) ` (I)
2

!N
1p
jIj
jIj
b �J (y; �)

L1
� 2�N(m+d)

p
jIj jJ j;

since dist (0; J) ` (I)2 � 2d for (I; J) 2 P0;dm , d � 0.

5. Interpolation estimates

Here we describe the decay principle needed to handle sums of resonant inner products by probability. In
fact the probabilistic estimates here rely only on the transversality induced by the curvature of the sphere,
and not on stationary phase estimates. Throughout this subsection we will use the familiar notation b' for
the Fourier transform of ', and we will use the parameter s 2 N to pigeonhole the side length 2�s of a cube
I 2 G. Let

QsU �
X

I2Gs[U ]

4n�1
I;� ; where Gs [U ] =

�
I 2 G : I � U and ` (I) = 2�s

	
;

be the Alpert projection onto Gs [U ], i.e. 4I;� and 4�
I;� are restricted to dyadic subcubes I of U at depth s

in the grid G. Then we have

(QsU )
�
f = S�;�Q

s
U (S�;�)

�1
f = S�;�

X
I2Gs[U ]

D
(S�;�)

�1
f; hn�1I;�

E
hn�1I;�

=
X

I2Gs[U ]

D
(S�;�)

�1
f; hn�1I;�

E
hn�1;�I;� =

X
I2Gs[U ]

4n�1;�
I;� f:

Let ' 2 C1 (Rn) be a smooth nonnegative function satisfying

(5.1) ' (�) =

�
1 if � 2 BRn (0; 1)
0 if � =2 BRn (0; 2)

;

and set
't (�) = 2

�tn'
�
2�t�

�
; for t � 0;

where we note that the scaling is with respect to 2�t instead of the usual scaling t. Recall that � (x) =�
x;

q
jxj2
�
2 Sn�1 for x 2 S. De�ne the spherical measure f I� by

f I� (z) � �� 4n�1;�
I;� f = 4n�1;�

I;� f
�
��1 (z)

�
det @��1 (z) d�n�1 (z)(5.2)

=
D
(S�;�)

�1
f; hn�1I;�

E
hn�1;�I;�

�
��1 (z)

�
det @��1 (z) d�n�1 (z) ;

and set
fs� (z) �

X
I2Gs[U ]

f I� (z) = ��
X

I2Gs[U ]

f I (z) = �� (Q
s
U )

�
f :

Note that the spherical measure f I� has mass roughly
���D(S�;�)�1 f; hn�1I;�

E��� 2�s(n�1) for I 2 Gs [U ] and is
supported in Sn�1.
Here is the model result of this subsection, where we recall that

(AaQsU )
�
f = S�;�AaQsU (S�;�)

�1
f =

X
I2Gs[U ]

aI 4n�1;�
I;� f:
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Proposition 34. Let n � 2. Then for p > 2n
n�1 , there is "p;n > 0 such that for every s 2 N, and every

f 2 Lp
�
Rn�1

�
, we have,

(5.3)
�
E�
2G

T h(AaQsU )� fip
Lp(Bn(0;2s))

� 1
p

. 2�s"p;n kfkLp(Rn�1) ;

where the implied constant depends on n, p and U , but is independent of s 2 N.

This estimate is a building block toward controlling the resonant portion of the disjoint form, which
however requires a much larger localization to a ball of radius 22s.
We prove Proposition 34 in three steps, beginning with Plancherel�s theorem in the form of a lemma

that allows improvement of the traditional L2 and L4 curvature estimates in the presence of probability
and Alpert wavelets. Then we use the scaled Marcinkiewicz interpolation theorem to obtain the desired
conclusion if certain L2 and L4 estimates hold. Finally we establish these L2 and L4 estimates to complete
the proof of Proposition 34.
Recall that

(5.4) fs� � �� (QsU )
�
f and f I� �

�
4n�1;�
I;� f

�
�
:

For s � r � 2s, de�ne a fattened n-dimensional measure fs�;r by

(5.5) fs�;r � fs� � 'r =
X

I2Gs[U ]

f I� � 'r =
X

I2Gs[U ]

f I�;r; where f I�;r � f I� � 'r :

We will use the upper majorant properties of L2 and L4 (we use this latter phrase loosely to denote that
convolution is a positive operation) to obtain Lemma 35 below in order to signi�cantly reduce the normT (QsU )� fp

Lp(jc'sj4�n) when averaged over involutive Alpert multipliers of f .
Note: The n-dimensional measure f I�;r = f I� � 'r is supported in the fattened spherical cap

I2�r �
�
z 2 Rn : dist

�
z;Supp f I�

�
. 2�r

	
;

which for r = 2s is roughly a rectangular block of side lengths 2�2s � 2�s oriented perpendicular to
a normal of the spherical cap Supp f I�. We have the estimate,

(5.6)
��f I�;r (z)�� . ���DS�1�;�f; hn�1I;�

E��� 2r2sn�12 1I2�r (z) :
Lemma 35. Suppose s 2 N, and ' is as in (5.1) above, so that jc'sj � 1 on B (0; C2s). Then for s � r � 2s,
we have Z

Rn

���cfs� (�)���2 jd'2s (�)j2 jc'r (�)j2 d� =

Z
Rn

���[fs�;2s (�)���2 jc'r (�)j2 d�;Z
Rn

���cfs� (�)���4 jc'r (�)j4 d� =

Z
Rn

���dfs�;r (�)���4 d�;
Proof. From Plancherel�s formula, we haveZ

Rn

���cfs� (�)���2 jd'2s (�)j2 jc'r (�)j4 d� = Z
Rn

��� \fs� � '2s (�)���2 jc'r (�)j2 d� = Z
Rn

���[fs�;2s (�)���2 jc'r (�)j2 d�;
and using Plancherel�s formula again with the convolution identity \F �G = bF bG, givesZ

Rn

���cfs� (�)���4 jc'r (�)j4 d� = Z
Rn

��� \fs� � fs� � 'r � 'r (�)
���2 d�

=

Z
Rn

\fs� � fs� � 'r � 'r (�) (�) \fs� � fs� � 'r � 'r (�) d�

=

Z
S

fs�;r � fs�;r (x) f
s
�;r � fs�;r (x) dx =

Z
Rn

���dfs�;r (�)���4 d�:
�

Here is the lemma that obtains the required Lp bounds from improved L2 and L4 bounds.
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Lemma 36. Let n � 2 and s 2 N. Assume that[fs�;2s
L2(jc'sj2�n) . 2

s
2 kfkL2(S) ;(5.7)  

E�
2G

 \h
(AaQsU )

�
i
�;2s

4
L4(�n)

! 1
4

. 2�s
n�2
4 kfkL4(S) :

Then for p > 2n
n�1 , there is "p;n > 0 such that 

E�
2G

 \h
(AaQsU )

�
i
�;2s

p
Lp(jc'sj2jd'2sj4�n)

! 1
p

. 2�s"p;n kfkLp(Rn�1) ;

holds for every s 2 N with implied constant independent of 	 and s.

Note in particular that Lemma 36 implies (5.3) in Proposition 34 .

Proof. Combining Lemma 35 with the assumptions (5.7) gives the pair of inequalities,T (QsU )� f
L2(jc'sj2jd'2sj4�n) . 2

s
2 kfkL2(S) ;�

E�
2G

T (AaQsU )� f4
L4(jc'sj2jd'2sj4�n)

� 1
4

. 2�s
n�2
4 kfkL4(S) :

Indeed, T (QsU )� f2
L2(jc'sj2jd'2sj4�n) �

T (QsU )� f2
L2(jc'sj2jd'2sj2�n)

=

Z
Rn

���T (QsU )� f (�)���2 jc's (�)j2 jd'2s (�)j2 d�
=

Z
Rn

���� \h
(QsU )

�
f
i
�
(�)

����2 jd'2s (�)j2 jc's (�)j2 d� = Z
Rn

���� \h
(QsU )

�
f
i
�;2s

(�)

����2 jc's (�)j2 d�
=

 \h
(QsU )

�
f
i
�;2s

2
L2(jc'sj2�n) . 2

s
(QsU )� f2

L2(S)
. 2s kfk2L2(S) ;

and

E�
2G

T (AaQsU )� f4
L4(jc'sj2jd'2sj4�n) � E

�
2G

T (AaQsU )� f4
L4(jc'sj2jd'2sj4�n)

� E�
2G

Z
Rn

���� \�
(AaQsU )

�
f
�
�
(�)

����4 jd'2s (�)j4 d� = E�2G Z
Rn

������ \X
I2Gs[U ]

aI

�
4n�1;�
I;� f

�
�
(�)

������
4

jd'2s (�)j4 d�
= E�

2G

Z
Rn

�������
\0@ X

I2Gs[U ]

aI 4n�1;�
I;� f

1A
�;2s

(�)

�������
4

d� = E�
2Gs[U]

Z
Rn

�������
\0@ X

I2Gs[U ]

aI

�
4n�1;�
I;� f

�1A
�;2s

(�)

�������
4

d�

= E�m
2Gs[U]

Z
Rn

������ \X
I2Gs[U ]

aI

�
4n�1;�
I;� f

�
�;2s

(�)

������
4

d� = E�m
2Gs[U]

Z
Rn

����h(AaQsU )� fi�;2s (�)
����44 d�

= E�m
2Gs[U]

h(AaQsU )� fi�;2s
4
L4(�n)

. 2�s(n�2)
(QsU )� f4

L4(�n�1)
. 2�s(n�2) kfk4L4(�n�1) ;

since all three operators in the factorization (QsU )
�
= S�;�Q

s
U (S�;�)

�1 are bounded on L4 (�n�1).
These L2 and L4 estimates can be recast in terms of square functions by Khintchine�s inequalities, and

we will now show that the scaled Marcinkiewicz interpolation theorem applies to obtain (5.3).
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Indeed, by Khinchine�s inequalities, the above bounds are equivalent to

kST;sfkL2(�n) . 2
s
2 kfkL2(�n�1) ;

kST;sfkL4(1B(0;2s)�n) . 2�s
n�2
4 kfkL4(�n�1) ;

where ST;s is the square function de�ned by

ST;sf �

0@ X
I2Gs[U ]

���TS 4n�1;�
I;� f

���2
1A 1

2

:

The sublinear operator ST;s is actually linearizable since it is the supremum of the linear operators Luf �
TS
P
I2Gs[U ] uI 4

n�1;�
I;� f taken over all vectors u = (uI)I2Gs[S] with juj`2 = 1. Then by the scaled

Marcinkiewicz theorem applied to ST;s, see e.g. [Tao2, Remark 29], we have

kST;sfkLp � Cn;p2
s
2 (1��)2�s

n�2
4 � = Cn;p2

s
2 (1�(2�

4
p ))2�s

n�2
4 (2�

4
p ) = Cn;p2

�s"n;p ;

where

"n;p =
n� 2
4

�
2� 4

p

�
� 1
2

�
1�

�
2� 4

p

��
=
n� 1
2p

�
p� 2n

n� 1

�
> 0;

for p > 2n
n�1 . Another application of Khintchine�s inquality converts this bound back to the expectation

bound, �
E�s
2Gs[U]

T (AaQsU )� fp
Lp(Bn(0;2s))

� 1
p

. Cn;p2
�s"n;p kfkLp(Rn�1) :

Thus we have

E�s
2Gs[U]

T (AaQsU )� f (�)p
Lp(Bn(0;2s))

. 2�sp"n;p kfkpLp(Rn�1) ;

which completes the proof of Lemma 36. �

It remains to establish the improved bounds in (5.7), which we accomplish in the next two subsections.
Once this is done, the proof of Proposition 34 is complete.

5.1. The L2 estimate. We �rst compute the norm of �2sQsU from L2 (�n�1) to L2
�
jc'sj2 �n�, where

�2sQsU f �
\�

(QsU )
�
f
�
�;2s

:

We write fsU � (QsU )
�
f for convenience in notation so that we have,�2sQsU f2L2(jc'sj2�n) =

Z
Rn

��� \(fsU )�;2s (�)���2 jc's (�)j2 d�
=

Z
Rn

\(fsU )�;2s � 's (�) \(fsU )�;2s � 's (�) d�

=
X

I;K2Gs[U ]

Z
Rn

\f I�;2s � 's (�) \fK�;2s � 's (�) d� =
X

I;K2Gs[U ]

Z
S

f I�;2s � 's (x)
�
fK�;2s � 's

�
(x) dx:

Noting that the supports of f I�;2s � 's and fK�;2s � 's are essentially disjoint unless I � K, and recalling the
de�nition of I2�s in Note 5, we can use (5.6),��f I�;r (z)�� . ���DS�1�;�f; hn�1I;�

E��� 2r2sn�12 1I2�r (z) ;
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with r = s to estimate the above expression by�2sQsU f2L2(jc'sj2�n) .
X

I2Gs[U ]

Z
Rn

��f I�;2s � 's (�)��2 d�(5.8)

.
X

I2Gs[U ]

Z
Rn

������DS�1�;�f; hn�1I;�

E��� 22s2sn�12 1I2�2s � 's (�)���2 d�
.

X
I2Gs[U ]

���DS�1�;�f; hn�1I;�

E���2 Z
Rn

���2s2sn�12 1I2�s (�)���2 d�;
where we have used the fact that the positive measures

��1I2�2s � 's�� and 2�s1I2�s , are supported in roughly
a common cube of side length 2�s, and have roughly the same mass, i.e.
(5.9)Z

Rn
1I2�2s � 's (�) d� =

�Z
Rn
1I2�2s (�) d�

��Z
Rn
's (�) d�

�
=

Z
Rn
1I2�2s (�) d� � 2

�s
Z
Rn
1I2�s (�) d�:

Then we continue with�2sQsU f2L2(jc'sj4�n) .
X

I2Gs[U ]

���DS�1�;�f; hn�1I;�

E���2 �2s2sn�12 �2 jI2�s j
= 2s

X
I2Gs[U ]

���DS�1�;�f; hn�1I;�

E���2 . 2s S�1�;�f2L2(Rn�1) . 2s kfk2L2(S) :
This proves the �rst line in (5.7).

5.2. The probabilistic L4 estimate. Now we turn to computing the norm of �2s from L4 (�n�1) to
L4 (Rn). We have using fsU � (QsU )

�
f that

kfsUk
4
L4(�n�1)

=

Z
Rn�1

0@ X
I2Gs[U ]

D
(S�;�)

�1
f; hn�1I;�

E
hn�1;�I;� (x)

1A4

dx

�
Z
Rn�1

X
I2Gs[U ]

�D
(S�;�)

�1
f; hn�1I;�

E
hn�1;�I;� (x)

�4
dx

=
X

I2Gs[U ]

���D(S�;�)�1 f; hn�1I;�

E���4 Z
Rn�1

���hn�1;�I;� (x)
���4 dx

�
X

I2Gs[U ]

���D(S�;�)�1 f; hn�1I;�

E���4 1p
jIj

!4
jIj =

X
I2Gs[U ]

���D(S�;�)�1 f; hn�1I;�

E���4 1jIj
= 2s(n�1)

X
I2Gs[U ]

���D(S�;�)�1 f; hn�1I;�

E���4 = 2s(n�1) ��� �f ���4
`4(Gs[U ])

;

where �f �
nD
(S�;�)

�1
f; hn�1I;�

Eo
I2Gs[S]

is the sequence of Alpert coe¢ cients of (S�;�)
�1
f restricted to Gs [S].

Recall that
(S�;�)�1 f

Lp(Rn�1)
� kfkLp(Rn�1) by Theorem 15.

Next we calculate the L4 (�n) norm of �2sQsU f �
\�

(QsU )
�
f
�
�;2s

= \(fsU )�;2s:

�2sQsU f4L4(�n) =
Z
Rn

��� \(fsU )�;2s (�)���4 d� = Z
Rn

������
X

I2Gs[U ]

[f I�;2s (�)

������
4

d�

=

Z
Rn

������
X

I;J2Gs[U ]

[f I�;2s (�)[fJ�;2s (�)

������
2

d� =

Z
Rn

������
X

I;J2Gs[U ]

\f I�;2s � fJ�;2s (�)

������
2

d�;
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by the Fourier convolution formula, and then by Plancherel�s theorem,�2sQsU f4L4(�n) =
Z
Rn

������
X

I;J2Gs[U ]

f I�;2s � fJ�;2s (z)

������
2

dz =
X

I;J;I0;J 02Gs[U ]

Z
f I�;2s � fJ�;2s (z) f I

0

�;2s � fJ
0

�;2s (z) dz:

Now we compute the average E�
2G

�2sAaQsU
f
4
L4(�n)

over all involutive smooth Alpert multipliers (AaQsU )
�,

where remembering that the functions f I�;2s have the �-smoothness built into their de�nition,

E�
2G

�2sAaQsU
f
4
L4(�n)

= E�
2G

X
I;J;I0;J 02Gs[S]

X
(aI ;aJ ;aI0 ;aJ0 )2f�1;1gGs[U]

E�
2G

Z �
aIf

I
�;2s

�
�
�
aJf

J
�;2s

�
(z)

�
aI0f

I0

�;2s

�
�
�
aJ0f

J0

�;2s

�
(z) dz

= 2

8>><>>:
X

I;J;I0;J 02Gs[U ]
I=J and I0=J0

+
X

I;J;I0;J 02Gs[U ]
I=I0 and J=J0

9>>=>>;
Z
f I�;2s � fJ�;2s (z) f I

0

�;2s � fJ
0

�;2s (z) dz � E1 + E2;

since the only summands that survive expectation are those for which aIaJaI0aJ0 is a product of squares,
i.e. the factors occur in pairs of equal sign �1.
Remark 37. This is the key consequence of taking expectation, and is the only place in the paper where it
arises. Note also that in n = 2 dimensions, Fe¤erman made the critical observation that the supports of
the convolutions f I�;2s � fJ�;2s are essentially pairwise disjoint, so that the L2 norm squared of the sum is the
sum of the L2 norms squared. This then led to the resolution of the extension problem in dimension n = 2.
However, in higher dimensions this observation doesn�t generalize in a simple way, since there is an (n� 2)-
dimension sphere contained inside Sn�1 whose pairs of �antipodal cubes�support functions whose convolutions
all occupy the same space. The products of distinct pairs of antipodal cubes vanish under expectation, which
leads to a favourable L4 estimate.

We have

E2 = 2
X

I;J2Gs[U ]

Z
f I�;2s � fJ�;2s (z) f I�;2s � fJ�;2s (z) dz = 2

X
I;J2Gs[U ]

Z ��f I�;2s � fJ�;2s (z)��2 dz:
Since the supports of f I�;2s � f I�;2s and f I

0

�;2s � f I
0

�;2s are disjoint unless dist (I; I
0) . 1, we also have

E1 = 2
X

I;I02Gs[U ]

Z
f I�;2s � f I�;2s (z) f I

0

�;2s � f I
0

�;2s (z) dz .
X

I2Gs[U ]

Z ��f I�;2s � f I�;2s (z)��2 dz:
Altogether we obtain

E�
2G

�2sAaQsU
f
4
L4(�n)

.
X

I;J2Gs[U ]

Z ��f I�;2s � fJ�;2s (z)��2 dz
=

X
I;J2Gs[U ]: dist(I;J).2�s

Z ��f I�;2s � fJ�;2s (z)��2 dz + sX
t=0

X
I;J2Gs[U ]: dist(I;J)�2�t

Z ��f I�;2s � fJ�;2s (z)��2 dz
� 	+

sX
t=0

	t:

Now note that the L1 norm of f I�;2s � fJ�;2s is essentiallyf I�;2sL1 fJ�;2sL1 �
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� khIkL1 khJkL1

=
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1);

and since the volume of R2s (I; J) = I2�2s + J2�2s is essentially 2�sn dist (I; J), we have
jRs+t (I; J)j � jR2s (I; J)j � 2�sn dist (I; J) = 2�sn�t; for dist (I; J) � 2�t;
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where the �rst equivalence is a simple consequence of the geometry of the situation. Thus we conclude that
for dist (I; J) � 2�t,f I�;2s � fJ�;2sL1 .

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1)
�

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1) 1

2�sn dist (I; J)
1R2s(I;J)


L1
:

Since there is � > 0 and a rectangle RI such that
��f I�;2s�� � �1RI

and
f I�;2sL1 � k�1RI

kL1 , which again is
a simple consequence of geometry, we then deduce the comparability of the integrands for dist (I; J) � 2�t,

f I�;2s � fJ�;2s (z) �
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2�s(n�1) 1

2�sn dist (I; J)
1R2s(I;J) (z)

=
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E��� 2s

dist (I; J)
1R2s(I;J) (z)

= 2s+t
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���1R2s(I;J) (z) :

Thus we have
sX
t=0

	t .
sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

Z
Rn

��f I�;2s � fJ�;2s (z)��2 dz
.

sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

Z
Rn

���2s+t ���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���1R2s(I;J) (z)
���2 dz

.
sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

22s+2t
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2 jR2s (I; J)j

.
sX
t=0

X
I;J2Gs[S]: dist(I;J)�2�t

2�s(n�2)2t
���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2 � sX

t=0


t;

where we have de�ned 
t to be the bound for 	t obtained above.
Now recall that (QsU )� f4

L4(�n�1)
� 2s(n�1)

X
I2Gs[U ]

D
(S�;�)

�1
f; hn�1I;�

E4
:

Thus for 0 < t < s we have


t .
X

I;J2Gs[U ]: dist(I;J)�2�t
2�s(n�2)2t

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2
. 2�s(n�2)2t

X
I;J2Gs[U ]: dist(I;J)�2�t

���D(S�;�)�1 f; hI;�E���4
. 2�s(n�2)2t2(s�t)(n�1)

X
I2Gs[U ]

���D(S�;�)�1 f; hI;�E���4 = 2�t(n�2)2�s(n�2) (QsU )� f4
L4(S)

;

since

#
�
J 2 Gs [S] : dist (I; J) � 2�t

	
� volume of annulus

volume of cube
� 2�t(n�1)

2�s(n�1)
;

which then gives
sX
t=0

	t .
sX
t=0


t .
sX
t=0

2�t(n�2)2�s(n�2)
(QsU )� f4

L4(S)
� 2�s(n�2)

(QsU )� f4
L4(S)

:

Similarly we obtain

	 . 2�s(n�2)
(QsU )� f4

L4(S)
;
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and adding these results gives

E�
2G

�2sAaQsU
f
4
L4(�n)

. 2�s(n�2)
(QsU )S�;� f4

L4(Rn�1)
. 2�s(n�2) kfk4L4(Rn�1) ;

which is the second line in (5.7).

6. Control of the below form

Combining the above principles of decay, and staying the introduction of absolute values until the very

end, we will be able to obtain estimates on the inner products
D
Thn�1;�I;� ; hn;�J;�

E
, which will lead to the

following form bounds for some �xed � > 0 depending only on n and p,���Bk;dbelow (f; g)��� . 2��(jdj+jkj) kfkLp kgkLp0 ; for p >
2n

n� 1 :

In fact we obtain stronger bounds in which the absolute values are inside the sum. Indeed, if we de�ne

jBbelowj (f; g) �
X

(I;J)2P0

���DT 4n�1;�
I;� f;4n;�

J;�g
E��� ;

we prove in this section that

(6.1) jBbelowj (f; g) . kfkLp kgkLp0 ; for p >
2n

n� 1 :

We will begin with the two easier cases involving d � 0, since each of these cases requires just one of the
decay principles described above.
Later we turn to the subforms involving d � 0, which are harder to control as each of them requires

combining two of the decay principles described above.

Remark 38. The next result shows in particular that the basic form B0;0below (f; g) is bounded using only the
crude estimate (4.6), and the strict restriction to p > 2n

n�1 . See also the Direct Argument in Subsubsection
9.2.1 for a much shorter proof of essentially the same result.

6.1. Subforms with k � 0; d � 0. Here is the conclusion of this �rst subsection.

Lemma 39. Fix s 2 N. Then

(6.2)
X
k�0

X
d�0

���Bk;dbelow (f; g)��� �X
k�0

X
d�0

X
(I;J)2Pk;d

0

���DT 4n�1;�
I;� f;4n;�

J;�g
E��� . kfkLp kgkLp0 ; for p � 2n

n� 1 :

To prove Lemma 39, we just need the estimate (4.7) that used radial integration by parts, namely,���DThn�1;�I;� ; hn;�J;�

E��� � CN2
�kN

hn�1;�I;�


L1

hn;�J;�
L1
� 2�kN

p
jIj jJ j; k � 0:

Let I� � (1 + �) I so that Supp4n�1;�
I;� f � I�. Note also that jI�j � jIj. Then we have from (4.7),���Bk;dbelow (f; g)��� � X

(I;J)2Pk;d
0

���DT 4n�1;�
I;� f;4n;�

J;�g
E��� � X

(I;J)2Pk;d
0

2�kN

 Z
I�

���4n�1;�
I;� f (x)

��� dx! Z
J�

���4n;�
J;�g (�)

��� d�!

= 2�kN
Z
Rn

X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!1J� (�) ���4n;�
J;�g (�)

��� d�
� 2�kN

Z
Rn

vuuut X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx1J� (�)
!2vuut X

(I;J)2Pk;d
0

���4n;�
J;�g (�)

���2d�

. 2�kN

0B@Z
Rn

0@ X
(I;J)2Pk;d

0

�Z
I

���4n�1;�
I;� f (x)

��� dx1J� (�)�2
1A

p
2

d�

1CA
1
p

0BB@Z
Rn

0@ X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2
1A

p0
2

d�

1CCA
1
p0

� 2�kN�1�2 ;
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where

�p
0

2 =

Z
Rn

0@ X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2
1A

p0
2

d� =

Z
Rn

0@X
J2D

0@ X
I2G: (I;J)2Pk;d

0

1

1A���4n;�
J;�g (�)

���2
1A

p0
2

d�:

We now choose a dyadic cube IJ 2 G that approximates the spherical projection �tan (J) of J . So �x
J 2 D and let IJ 2 G satisfy

cn` (�tan (J)) � ` (IJ) � ` (�tan (J)) and IJ � �tan (J) ;

where �tan (J) is the spherical projection J onto Sn�1, and where cn > 0 is chosen small enough that such
a cube IJ exists.
Now (I; J) 2 Pk;d0 if and only if

�tanJ � � (CpseudoI) and
2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 ;

which is essentially equivalent to

I � �tanJ � IJ and

s
2d�1

2 dist (0; J)
� ` (I) �

s
2d+1

dist (0; J)
:

Thus for �xed J 2 Dk where
Dk �

�
J 2 D : ` (J) = 2k

	
;

the set of cubes I 2 G with (I; J) 2 Pk;d0 is contained in the �nite tower of dyadic cubes
�
�(k)IJ

	d+A
k=d�A for

some �xed A 2 N. It follows that
P
I2G: (I;J)2Pk;d

0
1 � 2A and so

(6.3) �p
0

2 =

Z
Rn

0@ X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2
1A

p0
2

d� �
Z
Rn

 X
J2Dk

2A
���4n;�

J;�g (�)
���2!

p0
2

d� . kgkp
0

Lp0
;

by the square function estimate (1.17).
We turn now to estimating �1. Since the cubes J� in Dk have bounded overlap with measure roughly 2kn,

�p1 =

Z
Rn

0@ X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx1J� (�)
!21A

p
2

d�(6.4)

=

Z
Rn

0@X
J2Dk

8<: X
I2G[S]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
9=;1J� (�)

1A
p
2

d�

�
Z
Rn

X
J2Dk

8<: X
I2G[S]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
9=;

p
2

1J� (�) d�

� 2kn
X
J2Dk

0@ X
I2G[S]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

:

Now for each �xed J 2 Dk and I 2 G [S] with (I; J) 2 Pk;d0 , we have

` (J) = 2k; ` (I)
2
dist (0; J) � 2d; �tanJ � � (CpseudoI) ;

` (IJ) � ` (�tanJ) �
` (J)

dist (0; J)
=

2k

dist (0; J)
;



58 E. T. SAWYER

which implies

` (I) �

s
2d

dist (0; J)
�
r
2d` (�tanJ)

2k
= 2

d�k
2

p
` (IJ);

log2
` (I)

` (IJ)
� log2

2
d�k
2p

` (IJ)
� 1

2

�
d� k � log2

1

` (IJ)

�
:

Thus with d� � 1
2

�
d� k � log2 1

`(IJ )

�
and A as in (6.3) above, we have for each J 2 D,

0@ X
I2G[S]: (I;J)2Pk;d
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Altogether then,
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Now recall that P0 � f(I; J) 2 G [S]�D : �tan (J) � � (CpseudoI)g, and de�ne

K (I) �
[
fJ 2 D : �tan (J) � � (CpseudoI)g :
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and so we have
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if p � 2n
n�1 . Now using Hölder�s inequality with p

2 > 1, and the Fe¤erman Stein vector valued maximal
inequality,we can continue with
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by the square function estimate (1.17). Thus we have proved,���Bk;dbelow (f; g)��� . 2�kN2 dnp kfkLp kgkLp0 ; for k � 0 and d � 0;

which gives X
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X
d�0

���Bk;dbelow (f; g)��� . kfkLp kgkLp0 ; for p � 2n

n� 1 :

6.2. Subforms with k � 0; d � 0. This case also requires just one principle of decay, but this time we use
the moment vanishing decay principle instead of the radial integration by parts decay principle. From (4.14)
we have D

Thn�1;�I;� ; hn;�J;�
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The proof is now virtually the same as that in the previous subsection, but using the above estimate instead,
and results in the bound,���Bk;dbelow (f; g)��� . 2�jkj�2 dnp kfkLp kgkLp0 ; for k � 0 and d � 0;
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n� 1 :
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6.3. Subforms with k � 0; d � 0. Here we will use the vanishing moments of hn;�J;� together with stationary
phase. In the case k � 0 and d � 0, we have from (4.14), which used the vanishing moments of hn;�J;�,D
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Theorem 29 with M = 0 gives the asymptotic expansion,
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We can rewrite the principal term as

P_

'�I ;�
(yJ ; �) =

�
2�

�

�n�1
2 ei sgn[@

2
x�(X(yJ );yJ )]�4+��(X(yJ );yJ )p

jdetB (yJ)j

_

'�I (X (y) ; yJ ; y)

=

�
2�

�

�n�1
2

ei
(n�1)�

4 +�

q
1� jyJ j2

_

'�I (yJ ; yJ ; y)

= e�
(n�1)�

4 eij�j
�
2�

j�j

�n�1
2 �n
j�j

_

'�I

�
c0J
jcJ j

;
c0J
jcJ j

;
�0

j�j

�
;

and the remainder term as
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Now we compute that for x 2 I and y 2 �tanJ ,����� � (x) � �� (y)� jcJ j� � (yJ)
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To estimate the remainder term (6.11), we thank Cristian Rios for the following argument, which corrects
and simpli�es an earlier one in a previous version of this paper. We �rst need to estimate derivatives of f in
(6.10). From the identity
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Now we estimate the �rst factor in the integral in (6.11)
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Then, from (6.11) and the fact that jR1 (ib)j � jbj, we obtain
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Choosing N = n+ 2 so the second integral is �nite, we get
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if we take � � N = n+ 2.

Remark 40. This error estimate is the same estimate as that for the main term, but with an additional
small factor of 2�2d.

Combining the two estimates for the principle term and the remainder term, we have
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when k � 0, d � 0, and � � n+ 2. We record this as
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Next, we will use the estimate (6.17), in the argument we used above to bound B0;dbelow (f; g), to show that
there is � > 0 such that for all p > 2n
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Of course we now have d � 0 instead of the opposite inequality d � 0 used in the previous argument, but
we will see that much of the geometry of the decomposition remains the same.
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For k � 0 and d � 0, the estimates (6.17) imply,
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and now we repeat some of the geometric constructions relating to Pk;d0 from before. Fix J 2 D and let
IJ 2 G satisfy

cn�1 (J) � ` (IJ) � �1 (J) and IJ � �1 (J) ;

where �1 (J) is the spherical projection J onto Sn�1, and where cn > 0 is chosen small enough that such a
cube IJ exists. Now (I; J) 2 Pk;d0 if and only if

J � K (I) and 2d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2 ;

which is essentially equivalent to

I � �1J � IJ and

s
2d�1

2 dist (0; J)
� ` (I) �

s
2d+1

dist (0; J)
:

Thus just as in the previous argument, the set of cubes I 2 G [U ] with (I; J) 2 Pk;d0 is contained in the �nite

tower of dyadic cubes
�
�(k)IJ

	d+A
k=d�A for some �xed A 2 N. It follows that

P
I2G[U ]: (I;J)2C0;00

1 � 2A and
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so

�p
0

2 =

Z
Rn

0@ X
(I;J)2P0;0

0

���4n;�
J;�g (x)

���2
1A

p0
2

dx �
Z
Rn

 X
J2D

2A
���4n;�

J;�g (x)
���2!

p0
2

dx . kgkp
0

Lp0
:

We see that on the other hand, since the cubes J in Dk are pairwise disjoint with measure 2kn,

�p1 =

Z
Rn

0@ X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2 1J� (�)
1A

p
2

d�

�
Z
Rn

0@X
J2Dk

8<: X
I2G[U ]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
9=;1J� (�)

1A
p
2

d�

=

Z
Rn

X
J2Dk

8<: X
I2G[U ]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
9=;

p
2

1J� (�) d�

�
X
J2Dk

2kn

0@ X
I2G[U ]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

:

Now for each �xed J 2 Dk we have with A as above,0@ X
I2G: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

�

0@ d+AX
s=d�A

 Z
�(s)(IJ )�

���4n�1;�
�(s)(IJ );�

f (x)
��� dx!2

1A
p
2

� (2A)
p
2�1

X
I2G[U ]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p � X
I2G[U ]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p :
Altogether then,

�p1 .
X
J2Dk

2kn
X

I2G[U ]: (I;J)2Pk;d
0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p

�
X
J2Dk

2kn
X

I2G[U ]: (I;J)2Pk;d
0

jIj
p
2

 Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

= 2kn
X

I2G[U ]

0@ X
J2Dk: (I;J)2Pk;d

0

1

1A jIjp 1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

;

and since

#
n
J 2 Dk : (I; J) 2 Pk;d0

o
� 2�kn jKd (I)j � 2�kn

 
2d

` (I)
2 ` (I)

!n�1
2d

` (I)
2 = 2

�kn 2dn

` (I)
n+1 = 2

�kn2dn
�
1

jIj

� n+1
n�1

;

where Kd (I) �
(
J � K (I) : 2

d�1

` (I)
2 � dist (0; J) �

2d+1

` (I)
2

)
;
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we have that

�p1 . 2kn
X

I2G[U ]

�
#
n
J 2 Dk : (I; J) 2 Pk;d0

o�
jIjp

 
1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

. 2kn2�kn2dn
X

I2G[U ]

jIjp�
n+1
n�1

 
1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

= 2dn
Z
S

X
I2G[U ]

jIjp�
n+1
n�1�1

 
1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

1I (z) dz . 2dn kfkpLp ;

provided p � 2n
n�1 , using the the square function estimate (1.17) as in (6.7) above. Thus we have proved,���Bk;dbelow (f; g)��� . 2�d

n�1
2 2�jkj�

�
2dn
� 1
p kfkLp kgkLp0

. 2�d(
n�1
2 �n

p )2�jkj� kfkLp kgkLp0 ; for k � 0; d � 0;

and so X
k�0

X
d�0

���Bk;dbelow (f; g)��� .X
k�0

2�jkj�
X
d�0

2�d(
n�1
2 �n

p ) kfkLp kgkLp0 . kfkLp kgkLp0 ;

provided p > 2n
n�1 , and � � 1. Note that we only needed strict inequality p >

2n
n�1 in this last line. Moreover,

the previous lines of argument can be simpli�ed when p > 2n
n�1 - see Subsubsection 9.2.1.

6.4. Subforms with k � 0; d � 0. We take both k and d to be nonnegative, and begin with the radial
integration by parts formula (4.8) to obtain,D

Thn�1;�I;� ; hn;�J;�

E
=

Z
(0;1)

Z
Rn�1

(Z
Rn�1

ei��(x;y)
'�I (x)

� (x; y)
Z
dx

)
@Z�
e �J (y; �) dyd�

=

Z
(0;1)

Z
Rn�1

If'�I ;� (y; �) @Z� e �J (y; �) dyd�;
where

If'�I ;� (y; �) =
Z
Rn�1

ei��(x;y)
'�I (x)

� (x; y)
Z
dx

which is an oscillatory term having the form of (4.18), but with amplitude

f'�I (x; y) = '�I (x)

� (x; y)
Z
;

in place of '�I (x), which is then paired with the function

@Z�
e �J (y; �) = @Z� h

n;�
J;�

�
�y; �

q
1� jyj2

�
�n�1q
1� jyj2

in place of e �J (y; �), and where we can take Z 2 N to be a large positive integer depending only on n.
Now we proceed by treating the integralZ

(0;1)

Z
Rn�1

If'�I ;� (y; �) @Z� e �J (y; �) dyd�
as in the previous case where k � 0 and d � 0, but with the new amplitudes f'�I and pairing functions
@Z�
e �J (y; �) as above. The end result that we will obtain below is the estimate,

(6.18)
���Bk;dbelow (f; g)��� . 2�d�2�k� kfkLp kgkLp0 ; for k � 0; d � 0;

for some � > 0.
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Indeed, we apply Theorem 29 to If'�I ;� (y; �) = Pf'�I ;� (y; �) +R(1)f'�I ;� (y; �) and �rst note that

Pf'�I ;� (y; �) =
�
2�

�

�n�1
2 ei sgn[@

2
x�(X(y);y)]�4+��(X(y);y)p

jdetB (y)j
f'�I (X (y)) ;

and arguing as above, we get�����
Z
(0;1)

Pf'�I ;� (y; �) @Z� e �J (y; �) dyd�
����� . 2�dn�12 2�kZpjIj jJ j:

As for the remainder term R
(1)f'�I ;� (y; yJ ; �), we again invoke the argument of C. Rios to obtain from (6.16)

with � = 0 that�����R(1)f'�I ;� (y; �) ; @�hn;�J;�
����� � Z ����R(1)f'�I ;� (�) @�hn;�J;� (�)

���� d� � R(1)f'�I ;�

L1

@�hn;�J;�
L1
jJ j(6.19a)

. 2�d(
n�1
2 +2)2�kZ

p
jIj
p
jJ j � 2�d

n�1
2 2�kZ

p
jIj jJ j;

where we have discarded the small factor 2�2d.

6.4.1. The square function estimates. From above, we have the estimate,�����
Z
(0;1)

Z
S

If'�I ;� (yJ ; �) @Z� b �J (y; �) dyd�
����� . 2�dn�12 2�kZpjIj jJ j:

Now we apply the square function arguments to obtain (6.18) for some � > 0 by choosing Z su¢ ciently large
depending on n. Indeed, following the argument in the above subsection, we have

���Bk;dbelow (f; g)��� . 2�dn�12 2�kZ Z
Rn

vuuut X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2vuut X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2d�

. 2�d
n�1
2 2�kZ

0B@Z
Rn

0@ X
(I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx1J� (�)
!21A

p
2

d�

1CA
1
p

�

0BB@Z
Rn

0@ X
(I;J)2Pk;d

0

���4n;�
J;�g (�)

���2
1A

p0
2

d�

1CCA
1
p0

� 2�d
n�1
2 2�kZ�1�2:

and
P
I2G: (I;J)2C0;00

1 � 2A, which together give,

�p
0

2 =

Z
Rn

0@ X
(I;J)2P0;0

0

���4n;�
J;�g (x)

���2
1A

p0
2

dx �
Z
Rn

 X
J2D

2A
���4n;�

J;�g (x)
���2!

p0
2

dx . kgkp
0

Lp0
;

by the square function estimate (1.17).
We also have

�p1 = 2
kn
X
J2Dk

0@ X
I2G[U ]: (I;J)2Pk;d

0

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

;
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and since k � 0, we obtain that #
n
J 2 Dk : (I; J) 2 Pk;d0

o
. 2�kn, which yields

�p1 . 2kn
X

I2G[U ]

�
#
n
J 2 Dk : (I; J) 2 Pk;d0

o�
jIjp

 
1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

. 2kn2�kn2dn
X

I2G[U ]

jIjp�
n+1
n�1

 
1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

= 2dn
Z
S

X
I2G[U ]

jIjp�
n+1
n�1�1

 
1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

1I (z) dz . 2dn kfkpLp ;

just as before, by the square function estimate (1.17), provided p � 2n
n�1 .

Altogether then we have���Bk;dbelow (f; g)��� . 2�dn�12 2�kZ�1�2 . 2�d(n�12 �n
p )2�kZ kfkLp kgkLp0 ;

which implies (6.18) with

� � min
�
n� 1
2

� n

p
; Z

�
> 0;

provided p > 2n
n�1 and Z � 1. Finally, summing in k; d � 0, we obtainX

k�0

X
d�0

���Bk;dbelow (f; g)��� �X
k�0

X
d�0

2�d�2�k� kfkLp kgkLp0 . kfkLp kgkLp0 :

6.5. Wrapup. Combining the estimates from all four subsections above yields the desired bound,

jBbelow (f; g)j . kfkLp kgkLp0 ; p >
2n

n� 1 ;

in fact the stronger bound (6.1).

Remark 41. The strict inequality p > 2n
n�1 was used only in bounding the below form for large d. We will

also use p > 2n
n�1 for probabilistic control of the disjoint form, but only p > 1 for controlling the above form

Babove (f; g), to which we turn next.

7. Control of the above form

Next we control the above form,

Babove (f; g) �
X

(I;J)2R

D
Thn�1;�I;� ; hn;�J;�

E
;

where
R � f(I; J) 2 G [U ]�D : � (I) � �tan (CpseudoJ)g :

For this form, we will use the pigeonholed parameter k = log2 ` (J) already used in the below subforms,
together with a new parameter r = log2

`(�tanJ)
`(I) , measuring the ratio of the side lengths of I and �tanJ . Note

that for �xed k and r, and a �xed cube I 2 G, there is at most a bounded number of cubes J 2 D satisfying
the pigeonholed properties ` (J) = 2k and `(�tanJ)

`(I) = 2r such that (I; J) 2 R. This fact dictates that we
arrange our square function decompositions relative to the cubes I in the grid G (rather than to cubes J in
D as as in Bbelow (f; g)) in the arguments below.
To achieve geometric decay in both of these parameters, we will use the high order moment vanishing

principle of decay for the Alpert wavelets hn�1;�I;� in S for decay in r, an integration by parts in the radial
Fourier variable for decay in k � 0, and the high order moment vanishing principle of decay for the Alpert
wavelets hn;�J;� for decay in k � 0. The stationary phase estimate in Theorem 29 is not needed for the form
Babove (f; g).
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In fact we will prove the stronger result that the sublinear form

jBabovej (f; g) �
X

(I;J)2R

���DTShn�1;�I;� ; hn;�J;�

E���
satis�es

(7.1) jBabovej (f; g) . kfkLp kgkLp0 ; for p >
2n

n� 1 :

Here is the decomposition of R we will use:

R =
[
k2Z

1[
r=1

Rk;r; where for all k 2 Z and r 2 N;(7.2)

Rk;r �
�
(I; J) 2 R : ` (J) = 2k, and ` (�tanJ) � 2r` (I)

	
:

First we reduce matters to consideration of cubes J that are disjoint from a large cube
�
�2M ; 2M

�n
centered

at the origin, which will permit the manipulations used below.

7.1. Reduction to far away dyadic cubes. We now dispense with the �rst set of trivial pairs (I; J) 2 R,
namely those for which J �

�
�2M ; 2M

�n
for some �xed large positive integer M . This can be achieved by

splitting the function g into

g = 1[�2M ;2M ]ng + 1Rnn[�2M ;2M ]ng = g1 + g2;

and noting that
jhTf; g1ij . kfkL1 kg1kL1 . kfkLp 2Mnp kg1kLp0 ; 1 < p <1:

Then we may assume that g is supported outside
�
�2M ; 2M

�
, and it follows that 4n;�

J;�f =


f; hnJ;�

�
hn;�J;�

vanishes for J �
�
�2M ; 2M

�n
.

Next we deal with the slightly less trivial case of dyadic cubes J that have the origin as one of their vertices.
These cubes are contained in 2n towers of dyadic cubes, and we will derive here the bound corresponding to
the tower fJkg1k=M where Jk =

�
0; 2k

�n
, the other cases being similar. First we note that�

1

�ixn
en � @�

�N
e�ix�� = e�ix�� for all N ,

and so integrating by parts N times gives,

Tf;4n;�

Jk
g
�
=

Z
Rn

Z
�(S)

f (z) e�iz��d�n�1 (z)4n;�
Jk

g (�) d�

=

Z
�(S)

�Z
Rn
e�iz��hn;�Jk (�)



g; hn;�Jk

�
d�

�
d�n�1 (z)

= iN


g; hn;�Jk

� Z
S

�Z
Rn
e�iz�� (en � @�)N hn;�Jk g (�) d�

��
1

zn

�N
f (z) d�n�1 (z) ;

and then
1X
k=N

��
Tf;4n;�
Jk
g
��� . 1X

k=N

��
g; hn;�Jk ��� Z
S

�
1

�` (Jk)

�Np
jJkj

�
1

xn

�N
f (x) dx

�
�
1

�

�N 1X
k=N

��
g; hn;�Jk ��� ` (Jk)n2�N kfkL1 = �1�
�N

kfkL1
Z
Rn

1X
k=N

 ��
g; hn;�Jk ��� 1p
jJkj

!
` (Jk)

�N
1Jk (z) dz

�
�
1

�

�N
kfkL1

Z
Rn

0@ 1X
k=N

 ��
g; hn;�Jk ��� 1p
jJkj

!2
1Jk (z)

1A 1
2  1X

k=N

` (Jk)
�2N

1Jk (z)

! 1
2

dz

�
�
1

�

�N
kfkL1

0B@Z
Rn

 1X
k=N

��
g; hn;�Jk ���2
jJkj

1Jk (z)

! p0
2

dz

1CA
1
p0 0@Z

Rn

 1X
k=N

` (Jk)
�2N

1Jk (z)

! p
2

dz

1A 1
p

:
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Thus we obtain
1X
k=N

���DTSf;4n;�
Jk;�

g
E��� � Cp;N

�
1

�

�N
kfkL1 kgkLp0 � Cp;N

�
1

�

�N
kfkLp kgkLp0 ; 1 < p <1;

using the equivalence (2.1) of square function norms on g, together with the �niteness of the �nal factor if
N is chosen su¢ ciently large. Indeed, kgkLp0 � kSgkLp0 where

kSgkp
0

Lp0
=

Z
Rn

 1X
J2D

���4n;�
J;�g (z)

���2!
p0
2

dz =

Z
Rn

 1X
J2D

�D
g; hn;�J;�

E
hn;�J;� (z)

�2! p0
2

dz

=

Z
Rn

0@ 1X
J2D

 D
g; hn;�J;�

E 1p
jJ j

!2
1J� (z)

1A
p0
2

dz =

Z
Rn

0B@ 1X
J2D

D
g; hn;�J;�

E2
jJ j 1J� (z)

1CA
p0
2

;

and for N > n
p we have,Z

Rn

 1X
k=N

` (Jk)
�2N

1(Jk)� (z)

! p
2

dz =

Z
Rn

 1X
k=N

2�2Nk1([0;2k]n)� (z)

! p
2

dz .
Z
Rn

�
1 + jzj�2N

� p
2

dz <1:

De�nition 42. Set

R� �
n
(I; J) 2 R : J \

�
�2N ; 2N

�n
= ;
o

=
n
(I; J) 2 G [U ]�D : � (I) � �tan (CpseudoJ) and J \

�
�2N ; 2N

�n
= ;
o
;

and with Rk;r as in (7.2),

Rk;r� �
n
(I; J) 2 Rk;r : J \

�
�2N ; 2N

�n
= ;
o
;(7.3)

Rr� �
[
k

Rk;r� :

Assumption: It is understood from now on that all of the cubes J 2 R considered below in this
section satisfy J \

�
�2N ; 2N

�n
= ;, i.e. (I; J) 2 R�.

7.2. Pigeonholed subforms. Using the moment vanishing of the smooth wavelets hn�1;�I;� , we �rst show
the preliminary estimate that for all r 2 N,

(7.4)
���DThn�1;�I;� ; hn;�J;�

E��� . ` (I)
�
` (J)

�
p
jIj jJ j; for all (I; J) 2 Rr� when r � 1:

So consider the case (I; J) 2 Rr�, r � 1. Using (4.11) and (4.12), with cI denoting the center of I, we haveD
Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

e�i�(x)��hn�1;�I;� (x) dxhn;�J;� (�) d�

=

Z
Rn
e�i�(cI)��hn;�J;� (�)

�Z
Rn�1

e�i[�(x)��(cI)]��hn�1;�I;� (x) dx

�
d�

=

Z
Rn
e�i�(cI)��hn;�J;� (�)

(Z
Rn�1

"
��1X
`=0

(�i� � [� (x)� � (cI)])`

`!
+R� (�i� � [� (x)� � (cI)])

#
hn�1;�I;� (x) dx

)
d�:

In order to apply the moment vanishing properties of hn�1;�I;� , we need to express � (x) by Taylor�s formula
as well,

� (x) =
��1X
`=0

((x� cI) � @x)`

`!
� (cI) + �� (x� cI) ;
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and then plug this expression into the previous Taylor formula. The result is that all the terms with a
polynomial in x of order less than � vanish, and we are left withD

Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn
e�i�(cI)��hn;�J;� (�)

�Z
Rn�1

� (�; x)hn�1;�I;� (x) dx

�
d�(7.5)

=

Z
Rn
e�i�(cI)��hn;�J;� (�)

�Z
Rn�1

[R� (�i� � [� (x)� � (cI)])]hn�1;�I;� (x) dx

�
d�

+

Z
Rn
e�i�(cI)��hn;�J;� (�)

�Z
Rn�1

[�� (x� cI)]hn�1;�I;� (x) dx

�
d�

where

(7.6) � (�; x) = R� (�i� � [� (x)� � (cI)]) + �� (x� cI)

consists of the remainder term R� and a collection of error expressions in �� (�; x). Because jx� cI j �
j� (x)� � (cI)j, these error expressions satisfy the same pointwise bounds as the original remainder term
R� (�i� � [� (x)� � (cI)]). Recalling from (4.12) that the remainder term R� satis�es jR� (ib)j � jbj�

(�+1)! , and
taking absolute values inside the integral, we obtain,

(7.7)
���DThn�1;�I;� ; hn;�J;�

E��� . (dist (0; J) ` (I) sin �)�pjIj jJ j;
where � is the angle between � and � (x) � � (cI). In the case at hand where (I; J) 2 Rr�, we have
� � ` (�tanJ) � `(J)

dist(0;J) , and so���DThn�1;�I;� ; hn;�J;�

E��� . �dist (0; J) ` (I) ` (J)

dist (0; J)

��p
jIj jJ j � ` (I)

�
` (J)

�
p
jIj jJ j; for (I; J) 2 Rr� ;

which proves the preliminary estimate (7.4).
The case k � 0 will be handled by this last estimate alone, since for (I; J) 2 Rr�, it yields

(7.8)
���DThn�1;�I;� ; hn;�J;�

E��� . ` (�tanJ)
�

�
` (I)

` (�tanJ)

��
` (J)

�
p
jIj jJ j � 2�r�2�jkj�; for k � 0;

upon discarding the small factor ` (�tanJ)
�.

To handle the case k � 0, we introduce the radial integration by parts principle of decay, that will deliver
geometric gain in k. First we observe that (I; J) 2 R� implies I � �tan (CpseudoJ), and so for v = �tancJ
and for x 2 �tan (CpseudoJ) we have

v � � (x) � c > 0;

and �
1

�iv � � (x)v � @�
�N

e�i�(x)�� = e�ix�� for all N .

Integrating by parts N times then gives,D
Thn�1;�I;� ; hn;�J;�

E
=

Z
Rn

Z
Rn�1

hn�1;�I;� e�i�(x)��dxhn;�J g (�) d�(7.9)

=

Z
Rn�1

�Z
Rn
e�ix��hn;�J g (�) d�

�
hn�1;�I;� dx

= iN
Z
Rn�1

�Z
Rn
e�ix�� (v � @�)N hn;�J (�) d�

��
1

v � � (x)

�N
hn�1;�I;� (x) dx;

and then we have the second preliminary estimate,

(7.10)
���DThn�1;�I;� ; hn;�J;�

E��� . Z
Rn�1

�
1

�` (J)

�Np
jJ j
�
1

c

�N ���hn�1;�I;� (x)
��� dx � ` (J)

�NpjIj jJ j:
We must now combine these two preliminary estimates in the case k � 0. As usual, to achieve this we

iterate the two associated formulas (7.5) and (7.9) before taking absolute values inside the resulting integral.
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Thus we write,

D
Thn�1;�I;� ; hn;�J;�

E
= iN

Z
Rn�1

�Z
Rn
e�i�(x)�� (v � @�)N hn;�J;� (�) d�

��
1

v � � (x)

�N
hn�1;�I;� (x) dx

=

Z
Rn
e�i�(cI)��

(Z
Rn�1

e�i[�(x)��(cI)]��hn�1;�I;� (x)

�
1

v � � (x)

�N
dx

)
(v � @�)N hn;�J;� (�) d�

=

Z
Rn
e�i�(cI)��

(Z
Rn�1

� (�; x)hn�1;�I;� (x)

�
1

v � � (x)

�N
dx

)
(v � @�)N hn;�J;� (�) d�;

where

� (�; x) = R� (�i� � [� (x)� � (cI)]) + �� (x� cI) ;

is as in (7.6) above, and � (�; x) satis�es the estimates given there. Now we take absolute values inside the
integral, and using the estimates developed above, we obtain the following inequality for k � 0,
(7.11)���DThn�1;�I;� ; hn;�J;�

E��� . ` (I)
�
` (J)

�
` (J)

�NpjIj jJ j . � ` (I)

` (�tanJ)

��
` (J)

2��N . 2�r�2�k(N�2�)
p
jIj jJ j:

Combining (7.8) and (7.11) gives

(7.12)
���DThn�1;�I;� ; hn;�J;�

E��� . 2�r�2�jkjminf�;N�2�gpjIj jJ j;
and with this estimate in hand, we will now prove that for all N > 2� and r 2 N,

(7.13)

������
X

(I;J)2Rk;r
�

D
T 4n�1;�

I;� f;4n;�
J;�g

E������ . 2�r(��n�1
2 )2�jkjminf�;N�2�g kfkLp kgkLp0 ;

where Rk;r� is de�ned in (7.3). Indeed, we have from (7.12) that

X
(I;J)2Rk;r

�

���DT 4n�1;�
I;� f;4n;�

J;�g
E��� � X

(I;J)2Rk;r
�
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I;� f

���! Z
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���4n;�
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���!
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Z
Rn

X
(I;J)2Rk;r

�

 Z
J�

���4n;�
J;�g

���! ���4n�1;�
I;� f (x)

��� dx
� 2�r�2�jkjminf�;N�2�g
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�

 Z
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���4n;�
J;�g

���!2vuut X
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���4n�1;�
I;� f (x)

���2dx

� 2�r�2�jkjminf�;N�2�g

0BB@Z
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�
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���4n;�
J;�g

���!2
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p0
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1
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0@ X
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I;� f (x)

���2
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where the square function estimate (2.1) shows that

0B@Z
Rn

0@ X
(I;J)2Rk;r

�

���4n�1;�
I;� f (x)

���2
1A

p
2

dx

1CA
1
p

. kfkLp ;
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since for each I 2 G, there is at most one cube J 2 D such that (I; J) 2 Rk;r� . On the other hand, for each
�xed J 2 D, the number of cubes I 2 G such that (I; J) 2 Rk;r� is approximately 2r(n�1), and soX

(I;J)2Rk;r
�

���DT 4n�1;�
I;� f;4n;�

J;�g
E���

. 2�r�2�jkjminf�;N�2�g

0BB@Z
Rn

0@X
J2D

2r(n�1)
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���4n;�
J;�g

���!2
1A

p0
2

dx

1CCA
1
p0

kfkLp

� 2�r(��
n�1
2 )2�jkjminf�;N�2�g kgkLp0 kfkLp ;

for 1 < p <1 by the square function estimate (1.17) again.

7.2.1. The enlarged form. For k � 0 de�ne
Ek;r� �

�
(I; J) 2 G [U ]�D� : ` (J) = 2k, ` (�tanJ) = 2r` (I) , and I � Cpseudo2

k�tanJ
	
;

and de�ne the enlarged form,

Benlarge (f; g) �
1X
k=0

1X
r=0

X
(I;J)2Ek;r�

D
T 4n�1;�

I;� f;4n;�
J;�g

E
:

Then for each �xed J 2 D, the number of cubes I 2 G such that (I; J) 2 Ek;r� is approximately j2
k�tanJj
jIj =

2k(n�1)j�tanJj
2�r(n�1)j�tanJj = 2

(r+k)(n�1), and so we haveX
(I;J)2Rk;r

�

���DT 4n�1;�
I;� f;4n;�

J;�g
E���

. 2�r�2�jkjminf�;N�2�g

0BB@Z
Rn

0@X
J2D

2(r+k)(n�1)

 Z
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���4n;�
J;�g

���!2
1A

p0
2

dx

1CCA
1
p0

kfkLp

� 2�r(��
n�1
2 )2�jkjminf��

n�1
2 ;N�2��n�1

2 g kgkLp0 kfkLp ;

for 1 < p <1 by the square function estimate (1.17) again.

7.3. Wrapup. Finally, taking � > n�1
2 , N > 2� and summing the above estimates over r 2 N and k 2 Z,

gives, ������
X

(I;J)2R�

D
T 4n�1;�

I;� f;4n;�
J;�g

E������ . kfkLp kgkLp0 :
Combined with the reduction in the �rst subsection, we obtain the desired bound,

jBabove (f; g)j . kfkLp kgkLp0 ; 1 < p <1;
in fact the stronger bound (7.1).

Remark 43. The only restriction on p here is 1 < p < 1, and so the above form Babove (f; g) is bounded
for all 1 < p <1.

8. Control of the upper disjoint and upper distal forms

The principle of stationary phase is not used for the disjoint or distal subforms, as the critical point of the
phase now lies outside the support of the amplitude. When k � 0 we must introduce the radial integration by
parts principle of decay to bound the subforms, while in the case k � 0, we must use the high order vanishing
moments of hn;�J;�. Just as in the case of the below form Bbelow, combining the appropriate formulas, and
staying the introduction of absolute values until the very end, will yield the desired inequalities. There
is however a crucial di¤erence between the cases d � 0 and d < 0 in the case of both disjoint subforms
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Bk;d;mdisjoint (f; g) and distal subforms B
k;d
distal (f; g), and we will treat the upper and lower cases in separate

subsections, as the resonant lower forms with d < 0 require probability and interpolation techniques.
In fact, when d � 0, the standard principles of decay apply to give the required control. However, as d

becomes increasingly negative, resonance begins to set in more strongly, and by the time d = �m, none of the
standard principles of decay are any longer of use. Instead we must invoke classical methods of estimating L2

and L4 bounds, but using probability in order to obtain improved bounds for functions restricted to smooth
Alpert pseudoprojections.
Recall that

Bk;d;mdisjoint (f; g) �
X

(I;J)2Pk;d
m

D
T 4n�1;�

I;� f;4n;�
J;�g

E
;

where Pk;dm �
n
(I; J) 2 Pm : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
;

and Pm �
�
(I; J) 2 G [U ]�D : 2m+1I � S and �tan (J) � �

�
2m+1CpseudoI

�
n � (2mCpseudoI)

	
;

and that the parameters (k; d;m) run over

k 2 Z; m 2 N; and � log2
1

` (I)
� d <1:

We then decompose the disjoint form into upper and lower components determined by d nonnegative and
negative respectively,

Bdisjoint (f; g) = Bupperdisjoint (f; g) + B
lower
disjoint (f; g) ;(8.1)

Bupperdisjoint (f; g) �
1X
m=1

X
k2Z

X
d�0

Bk;d;mdisjoint (f; g) and B
lower
disjoint (f; g) �

1X
m=1

X
k2Z

X
d<0

Bk;d;mdisjoint (f; g) :

For the distal form we write,

Bk;ddistal (f; g) �
X

(I;J)2Xk;d

D
T 4n�1;�

I;� f;4n;�
J;�g

E
;

where X k;d �
n
(I; J) 2 X : ` (J) = 2k, and 2d � ` (I)

2
dist (0; J) � 2d+1

o
;

and X �
�
(I; J) 2 G [U ]�D : 2m+1I � S and �tan (J) \ � (2U) = ;

	
;

and decompose it into upper and lower subforms in the analogous way,

Bdistal (f; g) = Bupperdistal (f; g) + B
lower
distal (f; g) ;(8.2)

Bupperdistal (f; g) �
X
k2Z

X
d�0

Bk;ddistal (f; g) and B
lower
distal (f; g) �

X
k2Z

X
d<0

Bk;ddistal (f; g) :

8.1. Upper disjoint subforms with d � 0. When k = 0, we obtain geometric gain simultaneously in
m � 1 and d � 0 using the tangential integration by parts principle of decay. In order to handle arbitrary
k 2 Z, we must include additional principles of decay combined with tangential integration by parts. For
k � 0; we include radial integration by parts, and taking absolute values inside the integral at the very end,
we will obtain below that,

(8.3)
���DThn�1;�I;� ; hn;�J;�

E��� . 2�kN12�N2(m+d)
p
jIj jJ j:

For k � 0, we include instead the moment vanishing properties of hn;�J;�, and taking absolute values inside
the integral at the very end, we will obtain below that,

(8.4)
���DThn�1;�I;� ; hn;�J;�

E��� . 2�jkj�2�N2(m+d)
p
jIj jJ j:

With these estimates in hand, together with the square function arguments used repeatedly above, we
obtain, ���Bk;d;mdisjoint (f; g)

��� . 2��jkj2��(m+d)�Z ���4n�1;�
I;� f

�����Z ���4n;�
J;�g

���� ; for p � 2n

n� 1 ;
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for some � > 0 provided �, N1 and N2 are chosen su¢ ciently large, and �nally then,X
k2Z

X
d�0

1X
m=1

���Bk;d;mdisjoint (f; g)
��� . kfkLp kgkLp0 ; for p � 2n

n� 1 :

Here is a brief sketch of the two inner product estimates mentioned above, followed by the appropriate
square function estimate.

8.1.1. The case k � 0; d � 0. Combining the radial integration by parts formula (4.8),D
Thn�1;�I;� ; hn;�J;�

E
=

Z
R

Z
Rn�1

Z
Rn�1

ei��(x;y)

� (x; y)
N1
'�I (x) @

N1

�
b �J (y; �) dxdyd�;

with the tangential integration by parts formula (4.20),D
Thn�1;�I;� ; hn;�J;�

E
= iN
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Z
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Z
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ei��(x;y)

(�
Dx
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(Dv�) (x) � � (y)

�N2
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b �J (y; �) dxdy d�
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:
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b �J (y; �)
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Taking absolute values inside the integral, and using (4.9) together with min
n

1
�`(J) ;

1
�

o
. 1

`(J) , and (4.22),

we obtain,

(8.5)
���DThn�1;�I;� ; hn;�J;�

E��� . 2�kN12�N2(m+d)
p
jIj jJ j;

as required.

8.1.2. The case k � 0; d � 0. This time we use (4.20),D
Thn�1;�I;� ; hn;�J;�
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;

together with (4.14),D
Thn�1;�I;� ; hn;�J;�
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to obtain,D
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where in the second line above, we have reversed the change of variable in (3.6). Now from the estimates
used in (4.22) and (4.15) we obtain,���DThn�1;�I;� ; hn;�J;�

E��� . 2�jkj�2�N(m+d)pjIj jJ j;
as required.
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8.1.3. The square function argument for d � 0. We follow the square function argument used for the below
form Bk;dbelow (f; g) when k � 0; d � 0. The only di¤erence is that we now accumulate a factor of a large power
of 2m depending on n and p, but this will be o¤set by gains from integration by parts in both parameters m
and d - and this uses in a crucial way that d � 0. We begin by writing the sum over (I; J) 2 Pk;dm as,

X
(I;J)2Pk;d

m
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which gives
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We �rst consider �2 which satis�es,
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since for a �xed J with ` (J) = 2k, the number of cubes I such that

(I; J) 2 Pk;dm =

�
(I; J) 2 G [U ]�D : 2m+1I � U and �tan (J) � �
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n �
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�
and ` (J) = 2k and 2d � ` (I)

2
dist (0; J) � 2d+1

�

is roughly 2m(n�1), and where the �nal approximation is the square function estimate (1.17).
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Now we turn to �1 for which we have the estimate,

�p1 =

Z
Rn

0@ X
(I;J)2Pk;d

m

22m(n�1)

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2 1J (�)
1A

p
2

d�

= 2pm(n�1)
Z
Rn

0@X
J2Dk

X
I2G[U ]: (I;J)2Pk;d

m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2 1J (�)
1A

p
2

d�

= 2pm(n�1)
Z
Rn

X
J2Dk

0@ X
I2G[U ]: (I;J)2Pk;d

m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

1J (�) d�

= 2pm(n�1)2kn
X
J2Dk

0@ X
I2G[U ]: (I;J)2Pk;d

m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

:

Now for each J 2 Dk, the number of cubes I 2 G [U ] with (I; J) 2 Pk;dm is approximately 2mn, and so we
compute that,

0@ X
I2G[U ]: (I;J)2Pk;d

m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

.

0@ X
I2G[U ]: (I;J)2Pk;d

m

1

1A
p
2�1 X

I2G[U ]: (I;J)2Pk;d
m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p

� 2mn(
p
2�1)

X
I2G[U ]: (I;J)2Pk;d

m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p ;
and hence that

�p1 . 2pm(n�1)2kn
X
J2Dk

0@ X
I2G[U ]: (I;J)2Pk;d

m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!2
1A

p
2

. 2pm(n�1)2kn
X
J2Dk

2mn(
p
2�1)

X
I2G[U ]: (I;J)2Pk;d

m

 Z
I�

���4n�1;�
I;� f (x)

��� dx!p

. 2m[p(n�1)+n(
p
2�1)]2kn

X
J2Dk

X
I2G[U ]: (I;J)2Pk;d

m

jIj
p
2

 Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

� 2m[
3
2pn�(p+n)]2kn

X
I2G[U ]

0@ X
J2Dk: (I;J)2Pk;d

m

1

1A jIjp 1

jI�j

Z
I�

���4n�1;�
I;� f (x)

���2 dx!
p
2

;

where by the extension of (6.6) to m � 1,

X
J2Dk: (I;J)2Pk;d

m

1 � 2m(n�1)2�kn jKd (I)j � 2m(n�1)2�kn2dn
�
1

jIj

� n+1
n�1

:
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Thus we have

�p1 . 2m[
3
2pn�(p+n)]2kn2m(n�1)2�kn2dn

X
I2G[U ]

�
1

jIj

� n+1
n�1

jIjp
 
1

jI�j

Z
I�

���4n�1;�
I;�

���2!
p
2

= 2m[
3
2pn�(p+1)]2dn

X
I2G[U ]

jIjp�
n+1
n�1�1

 
1

jI�j

Z
I�

���4n�1;�
I;� f

���2!
p
2

1I (x) dx

. 2m[
3
2pn�(p+1)]2dn

Z
Rn�1

X
I2G[U ]

 
1

jI�j

Z
I�

���4n�1;�
I;� f

���2 1I (x)!
p
2

dx;

if p � 2n
n�1 , and then using p � 2 and the Fe¤erman Stein vector valued inequality, we can continue with

�p1 . 2m[
3
2pn�(p+1)]2dn

Z
Rn�1

0@ X
I2G[U ]

�
M
���4n�1;�

I;� f
���2� (x)

1A
p
2

dx

. 2m[
3
2pn�(p+1)]2dn

Z
Rn�1

0@ X
I2G[U ]

���4n�1;�
I;� f

���2 (x)
1A

p
2

dx . 2m[ 32pn�(p+1)]2dn kfkpLp :

Altogether then we have���Bk;d;mdisjoint (f; g)
��� . 2�jkj�2�N2(m+d)�1�2 . 2�jkj�2�N2(m+d)2m[

3
2pn�(p+1)]2dn kfkLp kgkLp0

= 2�jkj�2�(N2� 3
2pn+(p+1))m2�(N2�n)d2dn kfkLp kgkLp0 � 2

�jkj�2��m2��d kfkLp kgkLp0 ;
for d � 0 and p � 2n

n�1 , soX
k2Z

1X
d=0

1X
m=1

���Bk;d;mdisjoint (f; g)
��� .X

k2Z

1X
d=0

1X
m=1

2�jkj�2��m2��d kfkLp kgkLp0 . kfkLp kgkLp0 :

8.2. Upper distal subforms with d � 0. We can obtain similar estimates for the upper distal form, by
treating this form as the sum over pairs (I; J) with J in the �missing sector�, i.e. by setting m = s in the
corresponding disjoint form estimates, as we now do. Indeed, recall that in (8.3) and (8.4) above we showed
that ���DThn�1;�I;� ; hn;�J;�

E��� . 2�jkjminfN1;�g2�N2(m+d)
p
jIj jJ j;

for (I; J) 2 Pk;dm , k 2 N and d � 0. The same arguments, when applied to (I; J) 2 X k;d, yield���DThn�1;�I;� ; hn;�J;�

E��� . 2�jkjminfN1;�g2�N(s+d)
p
jIj jJ j . 2�jkjN12�Nd

p
jIj jJ j;

for (I; J) 2 X k;d, k 2 N and d � 0. Then the square function argument in the previous subsubsection applies
to give X

k2Z

1X
d=0

���Bk;ddistal (f; g)��� .X
k2Z

1X
d=0

2�jkj�2��d kfkLp kgkLp0 . kfkLp kgkLp0 ;

for some � > 0.

8.3. Wrapup. If we de�ne���Bupperdisjoint

��� (f; g) �
1X
m=1

X
(I;J)2Pm: `(I)2 dist(0;J)�1

���DT 4n�1;�
I;� f;4n;�

J;�g
E��� ;

jBupperdistal j (f; g) �
X

(I;J)2X : `(I)2 dist(0;J)�1

���DT 4n�1;�
I;� f;4n;�

J;�g
E��� ;

in which the absolute values are taken inside the sums, we have proved both

(8.6)
���Bupperdisjoint

��� (f; g) . kfkLp kgkLp0 ; for p >
2n

n� 1 ;
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and

(8.7) jBupperdistal j (f; g) . kfkLp kgkLp0 ; for p >
2n

n� 1 :

9. Control of the lower disjoint and lower distal forms

Momentarily �x s 2 N. Let fDigMi=1 be the set of dyadic cubes of side length 22s+1 such that 0 2 3Di.
Then M � Cn and

B
�
0; 22s

�
� D� �

M[
i=1

Di:

In this section we bundle the lower disjoint and distal forms together, and control their sum by bounding
the form

Blower (f; g) �
1X
s=1

Blowers (f; g) ;

where

Blowers (f; g) �
MX
i=1

X
(I;J)2Gs[U ]�D2s[Di]

D
T 4n�1;�

I;� f;4n;�
J;�g

E
:

The form Blower (f; g) turns out to include more pairs (I; J) than occur in the sum Blowerdisjoint (f; g)+B
lower
distal (f; g),

but the resulting overcounting is inconsequential because the sum of the moduli
���DT 4n�1;�

I;� f;4n;�
J;�g

E��� of
the inner products for the overcounted pairs has already been controlled without using probability. We �x
D 2 fDigMi=1 for the moment and consider just the form

Blowers;D (f; g) �
MX
i=1

X
(I;J)2Gs[U ]�D2s[D]

D
T 4n�1;�

I;� f;4n;�
J;�g

E
;

where for convenience we assume that B
�
0; 22s

�
� D.

Now we decompose the collection of pairs (I; J) arising in Blowers;D (f; g) by

Gs [U ]�D2s [D] =
s[

w=0

w[
r=0

Ls;w;r;

Ls;r �
�
(I; J) 2 Gs [U ]�D2s [D] : J � T Is [r]

	
; 0 � r � s;

Ls;w;r �
�
(I; J) 2 Gs [U ]�D2s [D] : J � P Is;w [r]

	
; 0 � r � w < s;

where T Is [r] and P
I
s;w [r] are tubes and pipes respectively, that are de�ned in the subsections below. Then

we will control the corresponding subforms,

Blowers;r;D (f; g) �
X

(I;J)2Ls;r

D
T 4n�1;�

I;� f;4n;�
J;�g

E
;

Blowers;w;r;D (f; g) �
X

(I;J)2Ls;w;r

D
T 4n�1;�

I;� f;4n;�
J;�g

E
;

and add in the parameters r and w to control the lower form

(9.1) Blowers (f; g) �
MX
i=1

sX
r=0

(
Blowers;r;D (f; g) +

rX
w=0

Blowers;w;r;D (f; g)

)
;

by

(9.2) E�Gs[U ]
���Blowers

�
(AaQsU )

�
f;P2s [D] g

���� . 2�"p;ns kfkLp(U) kgkLp0 (D) :
Now let � be a smooth bump function that is 1 on D and supported in U , so that

�g = P2s [Q] g + �G;
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where G is a polynomial of degree at most � and kGkL1 � kGkLp0 (Q) . kgkLp0 (Q). Using the smoothness of
�G, together with integrations by part as above, one easily veri�es that

E�Gs[U ]
���Blowers

�
(AaQsU )

�
f; �G

���� . 2�"p;ns kfkLp(U) kgkLp0 (D) ;
which together with (9.2) gives

E�Gs[U ]
���Blowers

�
(AaQsU )

�
f; �g

���� . 2�"p;ns kfkLp(U) kgkLp0 (D) :
It still remains to prove the norm estimate,�

E�G[U ]
T (AaQsU )� fp

Lp(D)

� 1
p

. 2�"p;ns kfkLp(U) :

Before turning to the details of these estimates, we discuss the problematic resonance that plagues the
lower form Blower (f; g).

9.1. Resonance in the lower form. Note that for �xed � 2 Rn, the wavelength of the oscillation of the
function x! e�i�(x)�� is roughly 1

j�j �
`(I)2

2d
, while the depth of the patch of the sphere � (I) in the direction

toward � is roughly ` (I) sin � � 2m` (I)2. Thus we will have oscillation along the patch � (I) if and only if
the wavelength `(I)2

2d
is less than the depth 2m` (I)2, i.e. m � jdj, while we will have smoothness along the

patch if and only if m� jdj.
On the other hand, for � 2 J , the wavelength of the oscillation of the function � ! e�i�(x)�� is roughly

1
cos](�(x);cJ ) � 1 (unless the unit vectors

cJ
jcJ j and � (cI) are nearly orthogonal), while the depth of the cube

in the diretion of � is roughly ` (J) = 2k. Thus we will have oscillation along the cube J if and only if the
wavelength 1 is less than the depth 2k, i.e. k � 0, while we will have smoothness along the cube if and only
if k � 0.

Conclusion 44. The most problematic case occurs when d < 0 and both m � jdj and k � 0.

We begin by illustrating our approach to controlling resonance in the most problematic of the subcases
in the next subsection, and it is here that we require the use of probability and an interpolation argument.
In such instances where we need to use expectation over �martingale transforms�, we will also need to apply
this expectation to norms rather than bilinear forms, which must be addressed.
In order to handle cases with partial resonance in the subsequent subsection, we introduce a di¤erent

decomposition of the disjoint form into resonant pipes that respects resonance when d < 0, and then apply
principles of decay along with probability and the interpolation argument to control these remaining subcases.
But �rst we look at the extreme resonant case and show how expectation plays a role in controlling this

simple case before tackling the general case. We will also show why the annular cone decomposition used in
Pm must be replaced by a pipe decomposition, namely because pipes respect resonance while sectors do not.

9.1.1. The extreme resonant case. The most resonant of the disjoint subforms is Bk;d;mdisjoint (f; g) = B
0;�m;m
disjoint (f; g)

when ` (J) = 1 and d = �m. Fix (I; J) 2 P0;�mm and let Jmmax [I] be any dyadic cube in D satisfying the
following conditions,

` (Jmmax [I]) =
1

` (I)
;(9.3)

dist (0; Jmmax [I]) � 2�m

` (I)
2 ;

�tanJ
m
max [I] � 2m+1I n 2m�1I;

` (�tanJ
m
max [I]) = 2m` (I) ;

where ` (�tanJmmax [I]) denotes the diameter of the quasicube �tanJ
m
max [I]. If ` (I) = 2

�s with s � m (which
follows from (9.3) and ` (�tanJmmax [I]) . 1), then we have

` (Jmmax [I]) = 2
s; dist (0; Jmmax [I]) � 22s�m; ` (�tanJ

m
max [I]) =

` (Jmmax [I])

dist (0; Jmmax [I])
= 2m�s:
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At this point we note that the cubes Jmmax [I] are essentially the maximal dyadic cubes that �t inside the
annular conic region given by (9.3), and hence there are roughly dist(0;Jmmax[I])

`(Jmmax[I])
� 22s�m

2s � 2s�m such cubes

stacked away from the origin. We enumerate these cubes by fJm;tmax [I]g
c2s�m

t=1 and let

(9.4) Jm;�max [I] �
c2s�m[
t=1

Jm;tmax [I]

denote their union. Thus Jm;�max [I] is a quasirectangle of �length�roughly dist (0; J
m
max [I]) � 22s�m, and �width�

roughly 2s - we say �quasi�because Jm;�max [I] is a union of dyadic cubes J
m;t
max [I] staggered in the direction

of the annular conic region. Note that there are at most Cn such quasirectangles Jm;�max [I] associated to any
given cube I 2 G [S].

Remark 45. Since quasirectangles do not respect resonance (which varies along the quasirectangle), they
will not play a part in the proof going forward, but will instead be replaced by pipes in the next subsection.

If � � ]
�
cJmmax[I] � � (cI) ;� (cI)

?
�
is the angle between the vector cJmmax[I] � � (cI) and the unit vector

� (cI), and if � � ]
�

cJmmax[I]

jcJmmax[I]j
;� (cI)

�
is the angle between the unit vectors

cJmmax[I]

jcJmmax[I]j
and � (cI), then

� � 2m` (I) and we have
�

2
� � = ]

�
cJmmax[I] � � (cI) ;� (cI)

�
(9.5)

= ]
 
cJmmax[I] �

cJmmax[I]��cJmmax[I]�� ;� (cI)
!
+ ]

 
cJmmax[I] � � (cI) ; cJmmax[I] �

cJmmax[I]��cJmmax[I]��
!

= ]
 
cJmmax[I]��cJmmax[I]�� ;� (cI)

!
+O

0BB@
����� (cI)� cJmmax[I]

jcJmmax[I]j

������cJmmax[I] � � (cI)��
1CCA � 2m` (I) + 2m` (I)

dist (0; Jmmax [I])

= 2m` (I)

�
1 +

1

dist (0; Jmmax [I])

�
� 2m` (I)

�
1 + 2m�2s

	
� 2m` (I) ;

since s � m. Thus it follows that there is neither oscillation nor smoothness of the inner productD
T 4n�1;�

I;� f;4n;�
J;�g

E
=

Z
Rn

�Z
Rn�1

D
f; hn�1;�I;�

E
hn�1;�I;� (x) ei�(x)��dx

�
4n;�
J;� g (�) d�

in the integral over I in braces, since the �tilted depth�of � (I) in the direction �
2 � � is given by

tilted depth � ` (I) cos� = ` (I) sin
��
2
� �

�
� 2m` (I)2 ;

and so

(9.6) wavelength � 1

dist (0; Jmmax [I])
= 2m` (I)

2 � tilted depth :

Of course there is neither oscillation nor smoothness in the integral over J either since ` (J) = 1 and the
wavelength coming from the sphere is approximately ` (J) = 1 as well.
Then (I; J) 2 P0;�mm essentially if and only if J � Jm;�max [I] and ` (J) = 1. There are roughly

1
`(I)n cubes

J � Jm;tmax [I] of side length 1 for each 1 � t � c2s�m, and we may restrict our attention to the cubes I having
side length 2�s with s � m, that are contained in a cube Q where

(9.7) Q � S with ` (Q) � 2m�s, such that Jm;�max [I] � Jm;�max [I
0] for all such cubes I � Q:

We also then set

(9.8) Q� �
[
I�Q

Jm;�max [I] ;

which is approximately equal to any of the Jm;�max [I] taken individually, and thus Q
� is a quasirectangle of

length roughly 22s�m, and width roughly 2s. Thus we have de�ned cube / quasirectangle pairs (Q;Q�)
which we now analyze a bit further. Recall from (9.3) that ` (�tanQ�) � 2m` (I) = 2m�s.
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We write

(9.9) QsQg �
X
I2QsQ

4n�1
I;� g and P

�;0;Q�

m;s g �
X

J�Q�: `(J)=1

4n;�
J;�g;

and recalling that
�
AaQsQ

��
=
�
AaQsQ

�S�;�
= S�;�AaQsQ (S�;�)

�1 is the conjugation of AaQsQ by S�;�, we
claim that

E�
2D

������
1X
m=1

1X
s=m

X
Q

D
T
�
AaQsQ

��
f;P�;0;Q

�

m;s g
E������ �

1X
m=1

1X
s=m

X
Q

E�
2D

���DT �AaQsQ�� ;P�;0;Q�

m;s g
E���(9.10)

. kfkLp kgkLp0 ; p � 2n

n� 1 ;

where we recall that the parameters k and d are �xed at k = 0 and d = �m. It is here in (9.10) that
our argument requires averaging over all involutive smooth Alpert multipliers on the left hand side of the
inequality. Note that we have replaced the large projection QS with the smaller projections QsQ for Q � S.

9.1.2. The interpolation argument. In order to illustrate the probabilistic methods in a relatively simple
situation, we �rst prove (9.10) when the sum is taken only over s = m 2 N, so that both Q and Q� reduce
to cubes of side length roughly 1. Thus there are only a bounded number of such cube / cube pairs (Q;Q�),
which for convenience we treat as a single pair (Q0; Q�0). We claim,

(9.11) E�
2G

�����
1X
m=1

D
T
�
AaQmQ0

��
f;P

�;0;Q�
0

m;m g
E����� . kfkLp kgkLp0 ; p >

2n

n� 1 :

We note that the expectation E�
2G
will circumvent some of the geometric L4 arguments that go back to

Fe¤erman [Fef] (see also [Bou], [Gut] and [Tao4]). Recall that we are in the case d = �m, and that

QmQ0
g =

X
I�Q0: `(I)=2�m

4n�1
I;� g and P

�;0;Q�
0

m;m g �
X

J�Q�
0 : `(J)=1

4n;�
J;�g;

where Q0 is a cube in Rn�1 centered at the origin with side length approximately 1, and Q�0 is a cube in Rn
at distance 2m from the origin with side length approximately 2m, and such that dist (Q0; �tanQ�0) � 1. We
will again use b' to denote the Fourier transform of '. Thus we must estimate the average of the moduli of
the inner products,D

T
�
AaQmQ0

��
f;P

�;0;Q�
0

m;m g
E
=

*
T

X
I2Gm[Q0]

aI 4n�1;�
I;� f;

X
J�Q�

0 : `(J)=1

4n;�
J;�g

+
(9.12)

=
X

I2Gm[Q0]

X
J�Q�

0 : `(J)=1

Z
S

Z
Rn
e�i�(x)��aI 4n�1;�

I;� f (x)4n;�
J;� g (�) dxd�

=

Z
Rn

8<:
Z
e�iz��

X
I2Gm[Q0]

aI 4n�1;�
I;� f

�
��1 (z)

�
@��1 (z) dz

9=; X
J�Q�

0 : `(J)=1

4n;�
J;�g (�) d�

�
Z
Rn
dfa;� (�) gm (�) d�;

where dfa;� denotes the Fourier transform of fa;� as in Section 5, and

gm (�) �
X

J�Q�
0 : `(J)=1

4n;�
J;�g (�) = P

�;0;Q�
0

m;m g (�) ;

fa;� (z) �
�
AaQmQ0

��
f
�
��1 (z)

�
@��1 (z) =

X
I2Gm[Q0]

aI 4n�1;�
I;� f

�
��1 (z)

�
@��1 (z)

=
X

I2Gm[Q0]

aI

D
f; hn�1;�I;�

E
hn�1;�I;�

�
��1 (z)

�
@��1 (z) �

X
I2Gm[Q0]

f Ia;� (z) ;

and where the spherical measure f Ia;� has mass roughly
��� bf (I)��� 2�m(n�1) and is supported in Sn�1.
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The bound (9.11) now follows immediately from Hölder�s inequality and Proposition 34, upon noting that
QsS in Proposition 34 is the projection Q

m
Q0
here. Indeed, from Proposition 34 we have

1X
m=1

E�
2G

T �AaQmQ0

��
f

Lp(j'mj4)

.
1X
m=1

2�m"n;p kfkLp(j'mj4)

and then in particular,

E�
2G

�����
1X
m=1

D
T
�
AaQmQ0

��
f;P

�;0;Q�
0

m;m g
E����� �

1X
m=1

E�
2G

T �AaQmQ0

��
f

Lp(j'mj4)

P�;0;Q�
0

m;m g

Lp0(j'mj4)

�
1X
m=1

2�m"n;p kfkLp(j'mj4) kgkLp0(j'mj4) . kfkLp kgkLp0 ; where "n;p > 0 for p >
2n

n� 1 ;m 2 N:

But we can in fact obtain more. De�ne the smooth Alpert pseudoprojection

(9.13) P
�;Q�

0
m;mg �

X
k2Z

X
J�Q�

0 : `(J)=2
k

4n;�
J;�g;

where of course the restriction J � Q�0 means that k � m in the sum above (contrast this with the restriction
to k = 0 in P�;0;Q

�
0

m;m g). Then we have the stronger inequality in which the sum over k is included,

E�
2G

�����
1X
m=1

D
TS
�
AaQmQ0

��
f;P

�;Q�
0

m;mg
E����� �

1X
m=1

E�
2G

TS �AaQmQ0

��
f

Lp

P�;Q�
0

m;mg

Lp0

(9.14)

�
1X
m=1

2�m"p;n
S�;�AaQmQ0

(S�;�)
�1
f

Lp

P�;Q�
0

m;mg

Lp0

. kfkLp kgkLp0 ; p >
2n

n� 1 ;m 2 N:

Remark 46. There is no direct use here of square function estimates to add in the parameter m. Instead,
we use expectation, geometric decay, and the boundedness of connected smooth Alpert pseudoprojections on
Lp - a pseudoprojection is connected if the cubes are summed over a connected set in the grid. This feature
will persist in summing over the additional parameters s and d below.

9.2. The resonant pipe decomposition. We now abandon the decomposition into annular cones para-
meterized by m, and distances parameterized by d, since this decomposition does not respect resonance in
the inner products. Instead, we will use (9.1) to decompose the lower form as

Blower (f; g) =
1X
s=1

MX
i=1

sX
r=0

(
Blowers;r;Q (f; g) +

rX
w=0

Blowers;w;r;Q (f; g)

)

=
1X
s=1

MX
i=1

sX
r=0

8<: X
(I;J)2Ls;r

D
T 4n�1;�

I;� f;4n;�
J;�g

E
+

rX
w=0

X
(I;J)2Ls;w;r

D
T 4n�1;�

I;� f;4n;�
J;�g

E9=; ;

where

Ls;r �
�
(I; J) 2 Gs [U ]�D2s [Q] : J � T Is [r]

	
; 0 � r � s;

Ls;w;r �
�
(I; J) 2 Gs [U ]�D2s [Q] : J � P Is;w [r]

	
; 0 � r � w < s:

Thus for each I 2 Gs [U ], we are now decomposing the set of cubes J 2 D2s [Q] into �truncated tubes�T Is [r]
and �truncated pipes�P Is;w [r], instead of the quasirectangles J

m;�
max [I] introduced in (9.4) above, using new

parameters w; r in place of m; d above. The advantage of this new decomposition into pipes is that it does
indeed respect resonance.
In the remainder of this section, we will de�ne the tubes T Is [r] and pipes P

I
s;w [r], and prove the associated

subform and norm estimates.
Fix s 2 N and consider a cube I 2 Gs [U ]. Let uIn be the unit outward normal to the sphere at the point

� (cI), and let
�
uI
�0
=
�
uI1; :::;u

I
n�1
	
be an orthonormal basis for the space

�
uIn
�?

perpendicular to uIn.

We will use the coordinate system
n�
uI
�0
;uIn

o
in Rn in connection with the cube I 2 Gs [U ], so that as
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we vary I 2 Gs [U ] the coordinate systems
n�
uI
�0
;uIn

o
rotate (Span

�
uIn
	
and Span

�
uI
�0
are determined

canonically under rotation, but not the individual basis vectors uI1; :::;u
I
n�1).

For convenience in notation, we momentarily suppose without loss of generality that I = I0 2 Gs [U ] is
centered at the origin in S, and consequently we can take

�
uI1; :::;u

I
n�1;u

I
n

	
to be the standard orthonormal

basis fe1; :::; en�1; eng in Rn, and � = (�1; :::; �n) =
�
�0; �n

�
2 Rn is the usual representation of a point � in

Rn. Then the pairs (I0; J) 2 G [U ]�D for which we have resonance on both sides of the inner product, are
precisely those satisfying ` (J) � 1 and,

1

dist (0; J)
� tilted depth � 2�s sin �;(9.15)

i.e. j�j � 2s

sin �
= 2s

j�j���0�� ; for � 2 J;

i.e. 2s�1 �
���0�� � 2s+1; for � 2 J;

where � is the angle � makes with the positive �n-axis. Thus the union P
I0
s of the J 0s satisfying ` (J) � 1

and (9.15) is essentially the di¤erence of two in�nite tubes, namely the
�
2s+1 � 2s+1 �1

�
-tube and the�

2s�1 � 2s�1 �1
�
-tube that are oriented vertically with in�nite length. We refer to P I0s as the resonant

2s-pipe for I0. In terms of the projection ��(cI0)
? of Rn onto the horizontal plane perpendicular to � (cI0),

we have

P I0s �
�
� 2 Rn : dist

�
cI0 ; ��(cI0)

?�

�
� 2s

�
;

since
���0�� � dist�cI0 ; �(cI0)?�

�
.

Truncated pipes and tubes: We also de�ne the truncated pipes

P I0s;w � P I0s \ LI0w ; 1 � w � s;

that are given as the intersection of the in�nite pipe P I0s and the horizontal slab

LI0w �
�
� 2 Rn : 22s�w�1 < �n � 22s�w

	
;

that is distance 22s�w�1 above the plane �n = 0, and has height roughly 2
2s�w. We also de�ne the

truncated pipes P I0s;w for �s � w � �1 by re�ecting the pipes P I0s;�w across the plane �n = 0, so that
these pipes lie below the �n = 0.
Finally, we de�ne the truncated tubes T I0s;+ � P I0s \ L+ where L+ � f� 2 Rn : 0 � �n � 2sg, and
their re�ections T I0s;� � �T I0s;� across the plane �n = 0.

We now extend these notions of tubes and pipes to all I 2 Gs [U ].

De�nition 47. For I 2 Gs [S] and 0 � w � s, de�ne the truncated pipe P Is;w to be the rotation of the pipe
P I0s;w by any rotation R that takes � (cI0) to � (cI), i.e.

P Is;w � RP I0s;w �
n
� 2 Rn : dist

�
cI0 ; ��(cI)?�

�
� 2s

o
;

where ��(cI)? = �
R�(cI0)

? . Similarly we de�ne tubes T Is;+ and T
I
s;�.

We will de�ne expanded versions of these tubes and pipes below as needed.

Note that if
���0��� 2s then e�i�(x)�� oscillates at least j�

0j
2s times along the span of � (I), so that integration

by parts is e¤ective, while if
���0�� � 2s then e�i�(x)�� varies by at most j�

0j
2s along the span of � (I), so that

the vanishing moment properties of h�I;� are e¤ective.

De�nition 48. For r > 0 and n � 2, de�ne the n-dimensional annulus A (0; r) = An (0; r) by

A (0; r) � B (0; r) nB
�
0;
r

2

�
;

where B (0; r) = Bn (0; r) is the ball of radius r > 0 in Rn centered at the origin. De�ne the upper half ball
B 1

2
(0; r) by

B+ (0; r) � f� 2 B (0; r) : �n � 0g :
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and the upper half annulus A+ (0; r) by

A+ (0; r) � f� 2 A (0; r) : �n � 0g :

To complete control of the lower disjoint form, in which d < 0, it su¢ ces to prove the following lemma
since

B+
�
0; 22s

�
= B+ (0; 2

s) [
s[

w=0

A+
�
0; 22s�w

�
:

We will later establish average control of Lp norms instead of inner products, something that is needed to
complete the proof of Theorem 5.

Lemma 49. Suppose s 2 N and 0 � w � s. Then

E�
2Gs[U]

���DTS (AaQsU )� f;P�A+(0;22s�w)
g
E��� . 2�"n;ps kfkLp kgkLp0 ; for p >

2n

n� 1 ;

where the implied constant is independent of s and w.

To prove the lemma, �x 0 � w � s and a 2 2Gs[S], and consider the positive expression,

(9.16) Zas;w �

������
X

I2Gs[U ]

X
J�P I

s;w

Z
Rn

�Z
Rn�1

e�i�(x)��
�
Aa 4n�1

I;� QsS

��
f (x) dx

�
4n;�
J;� g (�) d�

������ :
We begin by establishing control of Zas;w, and then control the sums over cubes J in expanding geometric
annuli away from the truncated pipes P Is;w, by applying decay principles to obtain geometric decay factors.
Finally we apply the arguments used to bound Zas;w to each of these collections of annuli, and then sum up
the annuli to cover all of the upper half annulus A+

�
0; 22s�w

�
, which completes the proof of the lemma.

De�nition 50. De�ne the expanded truncated pipes

P I0s;w [r] =
�
� 2 Rn : �r� 2 P I0s;w

	
;

where �r� =
�
�0

2r
�n
C52r

�
is a (slightly nonisotropic) dilation for r 2 Z, and Cn is chosen su¢ ciently large.

Thus P I0s;w [r] is a truncated pipe of height roughly Cn2
2s�w+r and width roughly 2s+r centered at a point

horizontally located away from that of P I0s;w. Then de�ne the rotated expanded truncated pipes P
I
s;w [r] for

I 2 Gs [S], by P Is;w [r] � RP I0s;w [r] for any rotation R in Rn that takes cI0 to cI .

Note that if Cn is chosen su¢ ciently large in the de�nition of P I0s;w (r), then for every I 2 Gs [U ], the upper
half annulus A+

�
0; 22s�w

�
is contained in the union of the tube T Is;w, which we recall is the convex hull of

the truncated pipe P Is;w, and the expanded truncated pipes P
I
s;w [r] for r � w, i.e.

(9.17) A 1
2

�
0; 22s�w

�
� T Is;w [

 
w[
r=1

P Is;w [r]

!
; for all I 2 Gs [S] :

Moreover, the overlap of the truncated pipes P Is;w is approximately�
# pipes P Is;w

�
�
�
volume of a pipe P Is;w

�
volume of annulus A+ (0; 22s�w)

� (2s)
n�1 � (2s)n�1 22s�w

(22s�w)
n = 2w(n�1);

which leads to,

1A+(0;22s�w) (�) .
1

2w(n�1)

X
I2Gs[U ]

1P I
s;w
(�) . 1CA+(0;22s�w+c) (�) :

We will need to choose Cn even larger in Subsubsection 9.3 below.

De�nition 51. For a 2 2Gs[S] and r � 0, de�ne

(9.18) Zas;w [r] �

������
X

I2Gs[U ]

X
J�P I

s;w[r]

Z
Rn

�Z
e�i�(x)��

�
Aa4n�1

I;�

��
f (x) dx

�
4n;�
J;� g (�) d�

������ :
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We will now control the average of this sum of inner products, as well as the stronger average norm
estimates, see (9.19) below. First, we consider the two extreme cases w = 0 and w = s, which are easily
handled by two di¤erent techniques. Then we combine these two proofs to give a single argument for the
general case.

De�nition 52. We de�ne

Rk;ws (r) �
�
(I; J) 2 Gs [U ]�Dk : J � P Is;w [r]

	
to be the set of pairs (I; J) 2 G [U ]�D with ` (I) = 2�s, ` (J) = 2k and J � P Is;w (r). When r = 0 we write
simply

Rk;ws = Rk;ws (0) :

For symmetry of notation, we also introduce tubes bI0 [w] that are essentially the same as the tubes T Is;w.
For I 2 Gs [U ] and 0 � w � s, de�nebI0 [w] � [�2s; 2s]n�1 � �22s�w�1; 22s�w� � T I0s;w;

and extend this de�nition to bI [w] by rotation , so that bI [w] � T Is;w and bI [0] � bI.
9.2.1. The case w = 0 (Direct Argument): In the case w = 0, we �rst consider Zas;0 with the sequence
a = 1 of all 10s, since the arguments in this subsubsection take absolute values inside anyways, and do not
use probability. The bound for the subform

Z1s;0 =

������
1X
s=1

X
I2Gs[U ]

X
J2D: J�bI

D
T 4n�1;�

I;� f;4n;�
J;�g

E������
applies more generally to indicators 1I times f , in place of smooth Alpert pseudoprojections 4n�1;�

I;� applied
to f , and to 1bI in place of PJ2D: J�bI 4n;�

J;�. To see this, we �rst note that

kT1IfkLp(bI) =

�Z
bI
����Z
I

e�i�(x)��f (x) dx

����p d��
1
p

�
���bI��� 1p jIj 1p0 �Z

I

jf (x)jp dx
� 1

p

= 2s
n+1
p 2

�sn�1
p0 k1IfkLp(Rn�1) = 2

�s"p;n k1IfkLp(Rn�1) ;

where

"p;n �
n� 1
p0

� n+ 1

p
=
n� 1
p

�
p� 1� n+ 1

n� 1

�
=
n� 1
p

�
p� 2n

n� 1

�
:

Then with s �xed, we continue with

X
I2Gs[U ]

��
T1If;1bIg��� � X
I2Gs[U ]

kT1IfkLp(bI) kgkLp0(bI) �
0@ X
I2Gs[U ]

kT1IfkpLp(bI)
1A 1

p
0@ X
I2Gs[U ]

kgkp
0

Lp0(bI)
1A 1

p0

.

0@ X
I2Gs[U ]

2�sp"p;n k1IfkpLp(Rn�1)

1A 1
p

kgkLp0([I2Gs[U]bI) � 2�s"p;n kfkLp(Rn�1) kgkLp0 (Rn) ;
and �nally we sum over s 2 N to obtain������

1X
s=1

X
I2Gs[U ]



T1If;1bIg�

������ �
1X
s=1

X
I2Gs[U ]

��
T1If;1bIg��� � Cn kfkLp(Rn�1) kgkLp0 (Rn) ;

where

Cn �
1X
s=1

2�"p;ns <1 for p >
2n

n� 1 :
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Corollary 53. If we enlarge the cubes I by a factor 2t to I [t] � 2tI, and if we enlarge the tubes bI transversally
(meaning perpendicular to � (cI)) by a factor of 2r to bI [r], then we obtain the estimate,������

X
I2Gs[U ]

D
T1I[t]f;1bI[r]g

E������ � C2
t n
p0 2r

n�1
p 2�s"p;n kfkLp(Rn�1) kgkLp0 (Rn) :

Proof. Apply the above argument and use
����bI [r]��� jI [t]jp�1� 1

p

= 2r
n
p 2

tn�1
p0
����bI��� jIjp�1� 1

p

. �

We now turn to obtaining the stronger norm estimate for smooth Alpert pseudoprojections,

(9.19)
1X
s=1

T (QsU )� f
Lp(A+(0;22s))

. 2�"p;ns kfkLp ; for s 2 N;

where integration by parts in the x-variable in the expanded pipes bI [r] will compensate for the growth 2r np
in Corollary 53.

Expanded pipes

Consider an expanded truncated pipe P I0s;0 [r]. For r � 0, we claim that the wavelength on I0 in the
inner product is much smaller than the diameter 2�s of I0, and so we can use integration by parts to gain
a geometric decay factor of CN2�rN for all N � 1. Indeed, for � 2 J with J � P I0s;0 [r] and 0 � r . s, the
wavelength of the exponential factor e�i�(x)�� is roughly 1

j�j �
1
22s , and referring to (9.15), we see that the

tilted depth of I0 in the direction �, is roughly ` (I) sin �, where sin � =
j�0j
j�j �

2r+s

22s . Altogether then, since

� 2 B
�
0; 22s

�
\ P I0s;0 [r], we have

tilted depth � ` (I) sin � & 2�s 2
r+s

22s
= 2r

1

22s
= 2r wavelength;

and so the exponential factor e�i�(x)�� oscillates at least 2r times as x traverses I0.
Thus D

T 4n�1;�
I;� f;4n;�

J;�g
E
=

Z
Rn

�Z
Rn�1

e�i�(x)�� 4n�1;�
I;� f (x) dx

�
4n;�
J;� g (�) d�;

where for � 2 J and J � P I0s;0 (r), the integral in braces satis�es,Z
Rn�1

e�i�(x)�� 4n�1;�
I;� f (x) dx =

Z
Rn�1

�
1

�i@x (� (x) � �)
@x

�N
e�i�(x)�� 4n�1;�

I;� f (x) dx

= (�1)N
Z
Rn�1

e�i�(x)��
�
@x

1

�i�0 (x) � �

�N
4n�1;�
I;� f (x) dx;

and hence is dominated in modulus by CN2�rN
R ���@N 4n�1;�

I;� f (x)
��� dx since

j�0 (x) � �j �
���0�� � 2r+s �

also � 1

` (I)

tilted depth

wavelength
& 2r+s

�
; for � 2 P I0s;0 (r) :

In conclusion, for any cube I 2 Gs [S] we have

(9.20)

����Z
Rn�1

e�i�(x)�� 4n�1;�
I;� f (x) dx

���� . CN2
�(r+s)N

Z
Rn�1

���@N 4n�1;�
I;� f (x)

��� dx; � 2 P Is;0 [r] :

Plugging this estimate back into the inner product gives���DT 4n�1;�
I;� f;4n;�

J;�g
E��� �

Z
Rn

����Z
Rn�1

e�i�(x)�� 4n�1;�
I;� f (x) dx

���� ���4n;�
J;�g (�)

��� d�(9.21)

. CN2
�(r+s)N

�Z
Rn�1

���@N 4n�1;�
I;� f

�����Z
Rn

���4n;�
J;�g

���� :
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For use later on, we note that for any K 2 G [S] with ` (K) � 2�s, we can sum over I 2 Gs [K] in (9.20) to
obtain

(9.22)

����Z
Rn�1

e�i�(x)�� (QsK)
�
f (x) dx

���� . CN2
�(r+s)N

Z
Rn�1

���@N (QsK)� f (x)��� dx; � 2 PKs;0 [r] ;

and with a similar estimate of the corresponding inner product.
We now apply the argument used above for bounding

Z1s;0 �

������
X

I2Gs[U ]

X
J�T Is [0]

Z
Rn

�Z
Rn�1

e�i�(x)�� 4n�1;�
I;� f (x) dx

�
4n;�
J;� g (�) d�

������ ;
to the expanded truncated pipes P Is;0 [r] in place of the tubes T

I
s [0], to obtain from Corollary 53 and the

estimate (9.20), thatT 4n�1;�
I;� f


Lp(P I

s;0[r])
=

 Z
P I
s;0[r]

����Z
Rn�1

e�i�(x)�� 4n�1;�
I;� f (x) dx

����p d�
! 1

p

(9.23)

�
��P Is;0 [r]�� 1p jIj 1p0 �CN2�(r+s)Np Z

Rn�1

���@N 4n�1;�
I;� f (x)

���p dx� 1
p

� CN2
�(r+s)N2r

n
p

��P Is;0�� 1p jIj 1p0 �Z
Rn�1

���@N 4n�1;�
I;� f (x)

���p dx� 1
p

� CN2
�r(N�n

p )2�s"p;n2�sN
@N 4n�1;�

I;� f

Lp(Rn�1)

;

since
��P Is;0�� � (2s+r)n�1 22s+r implies��P Is;0�� 1p jIj 1p0 � 2sn+1p 2r np 2�sn�1p0 = 2

s
�
n+1
p �n�1

p0

�
2r

n
p = 2�"p;ns2r

n
p :

Thus0@ X
I2Gs[U ]

T 4n�1;�
I;� f

p
Lp(P I

s;0[r])

1A 1
p

. CN2
�r(N�n

p )2�s"p;n

0@ X
I2Gs[U ]

2�sNp
@N 4n�1;�

I;� f
p
Lp(Rn�1)

1A 1
p

. CN2
�r(N�n

p )2�s"p;n kfkpLp(Rn�1) ;
and so also,

Z1s;0 [r] �

������
X

I2Gs[U ]

X
J�P I

s [r]

Z
Rn

�Z
Rn�1

e�i�(x)�� 4n�1;�
I;� f (x) dx

�
4n;�
J;� g (�) d�

������(9.24)

�
X

I2Gs[S]

T 4n�1;�
I;� f


Lp(P I

s;0[r])
kgkLp0(P I

s;0[r])

�

0@ X
I2Gs[U ]

T 4n�1;�
I;� f

p
Lp(P I

s;0[r])

1A 1
p
0@ X
I2Gs[U ]

kgkp
0

Lp0(P I
s;0[r]I)

1A 1
p0

� CN2
�r(N�n

p )2�s"p;n kfkLp(Rn�1) kgkLp0 (Rn) :
Summing in r gives

(9.25)

����Z
Rn
T (QsU )

�
f;
�
PsA+(0;22s)

��
g

���� . 1X
r=0

Z1s;0 [r] . CN2
�s"p;n kfkLp(Rn�1)

�PsA+(0;22s)

��
g


Lp0 (Rn)

;

and a standard argument then yields,

(9.26)

����Z
Rn
T (QsU )

�
f;1A+(0;22s)g

���� . CN2
�s"p;n kfkLp(Rn�1) kgkLp0 (A+(0;22s))

:

Norm estimate
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Since the inner product estimate (9.26) has a product form, we can extend it to a norm estimate by
duality. Indeed, for each s 2 N, choose an appropriate function gs with kgskLp0 (Rn) = 1 and

(9.27)
D
T (QsU )

�
f; gs

E
=
T (QsU )� f

Lp

0B@ [
I2Gs[U]

8><>:T Is [
[
r�0

P I
s [r]

9>=>;
1CA
;

and then with N > n
p and p >

2n
n�1 , sum in r and s to obtain

1X
s=1

T (QsU )� f
Lp(A+(0;22s))

�
1X
s=1

T (QsU )� f
Lp

0B@ [
I2Gs[U]

8><>:T Is [
[
r�0

P I
s [r]

9>=>;
1CA

=
1X
s=1

���DT (QsU )� f; gsE��� � 1X
s=1

1X
r=0

CN2
�r(N�n

p )2�s"p;n kfkLp(Rn�1) kgskLp0 (Rn) . kfkLp(Rn�1) ;

which is (9.19). Here we have used (9.27) in the �rst equality in the second line above, (9.26) in the second
inequality, and kgskLp0 (Rn) = 1 in the �nal inequality.

9.2.2. The case w = s. In this case we need to take expectation. Since each �xed cube J in the upper half
annulus A+ (0; 2s) belongs to the truncated tube T Is;s � T Is \ LIs for essentially all I 2 Gs [S], we get

Zas;s =

������
X

I2Gs[U ]

X
J�T Is;s

Z
Rn

�Z
e�i�(x)�� (AaQsU )

�
f (x) dx

�
4n;�
J;� g (�) d�

������
�

������
X
Q0

D
T
�
AaQsQ0

��
f;Pn;�Q�

0 ;s;�
g
E������ .

X
Q0

T �AaQsQ0

��
f

Lp

Pn;�Q�
0 ;s;�

g

Lp0

;

where QsQ0
=
P
I2Gs[Q0]

4n�1
I;� and Pn;�Q�

0 ;s;�
=
P
J2Dk[Q�

0]
4n�1;�
I;� , and where Q0 ranges over a bounded

number of cubes in S with side length approximately 1. Also note that�
AaQsQ0

��
f = S�;�Aa

X
I2Gs[Q0]

D
(S�;�)

�1
f; hn�1I;�

E
hn�1I;� =

X
I2Gs[Q0]

aI 4n�1;�
I;� :

Now we apply just part of the estimate (9.14), which followed from Proposition 34, to obtain

E�
2Gs[U]

Zas;s .
�
E�
2Gs[U]

TS �AaQsQ0

��
f
p
Lp(B(0;2s))

� 1
p Pn;�Q�

0 ;s;�
g

Lp0

. 2�"p;ns kfkLp kgkLp0 ;

for p > 2n
n�1 and m = s 2 N. We do not need to make use of expanded pipes in this case, due to the small

size of the ball B (0; 2s).
However, we actually obtain from Proposition 34 the stronger average norm inequality,

(9.28)
�
E�
2Gs[U]

TS �AaQsQ0

��
f
p
Lp(B(0;2s))

� 1
p

. 2�"p;ns kfkLp ; for s 2 N;

and this is what we will use going forward.

9.3. The general case 0 � w � s via square functions. In this subsection we prove the average norm
estimate for each s 2 N and 0 � w � s,

(9.29) E�
2G[U]

T (AaQsU )� f
Lp(A+(0;22s�w))

. 2�"n;ps kfkpLp(U) ; for p >
2n

n� 1 :

Note that we have already proved the endpoint case w = 0 in (9.19), and the other endpoint case w = s
in (9.28). It will be convenient to pass back and forth between average norm estimates and square function
estimates using Khintchine�s inequalities. For example (9.29) is equivalent to,

(9.30)
S�T;sf

Lp(A+(0;22s�w))
. 2�"n;ps kfkLp ; for p >

2n

n� 1 ;
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where

(9.31) S�T;sf �

0@ X
I2Gs[U ]

���T 4n�1;�
I;� f

���2
1A 1

2

is the square function associated with the random decomposition

T (AaQsU )
�
f =

X
I2Gs[U ]

aIT 4n�1;�
I;� f; for each a 2 2G[U ]:

We will prove (9.30) in three steps, the �rst two being local estimates requiring probabilistic arguments,
and the third being a global estimate that uses square function arguments. The probabilistic local estimates
are used to control the sums over cubes I 2 Gs [K] which are typically close together, while the square
function estimate is used to control the sums of cubes K 2 Gs�w [S] in which the cubes I are typically
farther apart. Once we have established (9.30), we use the decomposition

B+
�
0; 22s

�
= P I0s;0 [r] [

s�1[
w=0

A+
�
0; 22s�w

�
;

and then appeal to re�ection across the horizontal plane to conclude that,

(9.32)
S�T;sf

Lp(B+(0;22s))
. 2�"n;ps kfkLp ; for p >

2n

n� 1 :

9.3.1. Step 1: local probabilistic argument. Here we prove the local square function inequality,S�T;s (QsK)� fp
Lp(A+(0;22s�w))

. 2�s"p;n
(QsK)� fp

Lp(Rn�1)
; for all K 2 Gs�w [U ] and s 2 N;

which by Khintchine�s inequalities is equivalent to the local average expectation inequality,

E�
2G[U]

T (AaQsK)� fp
Lp(A+(0;22s�w))

. 2�s"p;n
(QsK)� fp

Lp(Rn�1)
; for all K 2 Gs�w [U ] and s 2 N:

Consider (I; J) 2 Rk;ws , i.e. I 2 Gs [S], ` (J) = 2k and J � P Is;w. Recall that T
I
s;w is the tube given by the

convex hull of the pipe P Is;w. For 0 < w < s, these tubes have bounded overlap approximately 2w(n�1).

De�nition 54. For each K 2 Gs�w we de�ne a �tube�TK;\s;w �
[

I2Gs[K]

T Is;w consisting of all the tubes T
I
s;w

with I � K, where each tube T Is;w has dimensions C12
s� 22s�w, and due to the 2w(n�1)-overlap, each of the

�tubes�TK;\s;w also has dimensions C22s � 22s�w, but with a larger constant C2.

We begin with the following more elementary local average inequality for 0 � w � s, in which we restrict
the integration over Rn to the tubes TK;\s;w ,

(9.33) E�
2Gs[S]

TS (AaQsK)� fp
Lp(TK;\

s;w )
. 2�(2s�w)p"p;n kfkpLp(U) ; for K 2 Gs�w [U ] and p >

2n

n� 1 :

To prove this, we consider the L2 and average L4 bounds separately and then interpolate.

Step 1(a): local L2 estimate

We �rst compute the norm of �2sQsK from L2 (�n�1) to L2
�
TK;\s;w

�
, where we recall that

�2sQsKf �
\�

(QsK)
�
f
�
�;2s

:

Consistent with (5.4), we write and

fsK � (QsK)
�
f ;(9.34)

(fsK)� � ��

h
(QsK)

�
f
i
=

X
I2Gs(K)

��

��
4n�1
I;�

��
f

�
=

X
I2Gs(K)

f I� ;

(fsK)�;r =
X

I2Gs(K)

f I�;r :
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For I0 2 Gs [K], whose normal is en, we will use the rectangular convolver 's;2s�w (z) that has dimensions
2�s � ::: � 2�s � 2w�2s, and we will multiply by a modulation m (z) that translates the associated Fourier
tube [�2s; 2s]n�1 �

�
�22s�w; 22s�w

�
to be positioned near TK;\s;w . For convenience we momentarily set

(9.35)  (z) � m (z)'s;2s�w (z) :

We then have with fsK = (Q
s
K)

�
f ,�2sQsKf2L2�jb j2�n� =
Z
Rn

��� \(fsK)�;2s (�)���2 ���b (�)���2 d� = Z
Rn

\(fsK)�;2s �  (�) \(fsK)�;2s �  (�) d�

=
X

I;J2Gs[K]

Z
Rn

\f I�;2s �  (�) \fJ�;2s �  (�) d� =
X

I;J2Gs[K]

Z
S

f I�;2s �  (x)
�
fJ�;2s �  

�
(x) dx:

Note �rst that the supports of f I�;2s �  and fJ�;2s �  are essentially disjoint unless I � J . Next, if we
de�ne the fattened cube

I�0 �
��
�2�s; 2�s

�n�1 � ��2w�2s; 2w�2s��+ en ;
and I� by rotation, then we have��f I�;2s �  (z)�� . ���DS�1�;�f; hn�1I;�

E��� 22s�w2sn�12 1I� (z) ;
since��f I�;2s �  �� � ��f I� �  �� .  df I�

d�n�1


1
�
�
1�(I)�n�1

�
� 's;2s�w (z) �

���DS�1�;�f; hn�1I;�

E��� 2sn�12 � (density)1I� (z) ;

where the quantity density (of the convolution with 's;2s�w ) satis�es,

(density) 2�s(n�1)2w�2s = (density) jI�j =
1�(I)�n�1 = 2�s(n�1)

=) density =
2�s(n�1)

2�s(n�1)2w�2s
= 22s�w:

Altogether then, using jI�j = 2�s(n�1)2w�2s, we have from (9.34) that�2sQsKf2L2�jb j2�n� .
Z
Rn

���(fsK)�;2s �  (�)���2 d� = X
I2Gs[K]

Z
Rn

��f I�;2s �  (�)��2 d�
.

X
I2Gs[K]

Z
Rn

������DS�1�;�f; hn�1I;�

E��� 22s�w2sn�12 1I� (�)���2 d� . X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 �22s�w2sn�12 �2 jI�j
= 24s�2w2s(n�1)2�s(n�1)2w�2s

X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 = 22s�w X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 . 22s�w kfsKk2L2(U) :
In terms of the notation T (QsK)

�
f , this implies

(9.36)
T (QsK)� f2

L2(TK;\
s;w )

. 22s�w
(QsK)� f2

L2(U)

Step 1(b): local average L4 estimate

We run the argument in Subsection 5.2 up until the estimate for 
t = 
t [K], where 2�t � dist (I; J)
for I; J 2 Gs [K], i.e. 2�t . ` (K) = 2w�s or s � w � t � s. It is this restriction to large t that yields the
geometric gain needed for the average L4 estimate when I; J 2 Gs [K]. Then for s � w < t < s, and with
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notation as in Subsection 5.2, we have


t [K] .
X

I;J2Gs[K]: dist(I;J)�2�t
2�s(n�2)2t

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2
. 2�s(n�2)2t

X
I;J2Gs[K]: dist(I;J)�2�t

���D(S�;�)�1 f; hI;�E���4
. 2�s(n�2)2t2(s�t)(n�1)

X
I2Gs[K]

���D(S�;�)�1 f; hI;�E���4 = 2�t(n�2)2�s(n�2) QsK (S�;�)�1 f4
L4(U)

;

which gives

sX
t=s�w

	t [K] .
sX

t=s�w

t [K] .

sX
t=s�w

2�t(n�2)2�s(n�2)
QsK (S�;�)�1 f4

L4(U)

� 2�(s�w)(n�2)2�s(n�2)
QsK (S�;�)�1 f4

L4(U)
= 2�(2s�w)(n�2)

QsK (S�;�)�1 f4
L4(U)

:

Similarly we obtain

	 . 2�(2s�w)(n�2)
QsK (S�;�)�1 f4

L4(U)
;

and adding these last two inequalities gives,

E�
2G

�2sAaQsK
f
4
L4
�
jb j2�n� . 2�(2s�w)(n�2) kfk

4
L4(U) :

In terms of the notation T (QsK)
�
f , this implies

(9.37) E�
2G

T (QsK)� f4
L4(TK;\

s;w )
. 2�(2s�w)(n�2)

(QsK)� f4
L4(U)

Step 1(c): local interpolation

Collecting the bounds (9.36) and (9.37) gives,T (QsK)� f
L2(TK;\

s;w )
. 2

2s�w
2 kfkL2(K) ;

E�
2G

T (QsK)� f
L4(TK;\

s;w )
. 2�

2s�w
2

n�2
2 kfk4L4(S) :

Now we claim that an application of the interpolation Lemma 36 yields,

(9.38) E�
2G

T (AaQsK)� f
Lp(TK;\

s;w )
. 2�(2s�w)"0p;n kfkLp(U) ; for p >

2n

n� 1 :

Indeed, the calculation at the end of the proof of Lemma 36 shows that if p > 2n
n�1 , then (with notation as

in that proof) � = 4
p � 1 and soh

2�
2s�w
2

n�2
2

i1�� h
2
2s�w
2

i�
= 2�

2s�w
2

n�2
2 2(

2s�w
2 + 2s�w

2
n�2
2 )� = 2�

2s�w
2

n�2
2 2(

2s�w
2

n
2 )� = 2�(2s�w)"

0
p;n ;

where

"0p;n � 1

2s� w

�
2s� w
2

n� 2
2

�
�
2s� w
2

n

2

��
4

p
� 1
��

=
n� 2
4

� n

4

�
4

p
� 1
�
=
n� 1
2

� n

p
=
n� 1
2p

�
p� 2n

n� 1

�
:

This completes our proof of (9.33) in Step 1.
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9.3.2. Step 2: local expanded probabilistic argument. Now we turn to proving the expanded analogue of (9.33)
given by,

E�
2Gs[U]

T (AaQsK)� fp
Lp(PK

s;w[r])
. 2�rp

�
N� n

p0

�
2�(2s�w)p"p;n kfkpLp(Rn�1)(9.39)

for all K 2 Gs�w [S] and p >
2n

n� 1 ;

where � > 0 and PKs;w [r] is the expanded pipe corresponding to the tube T
K
s;w. This is proved in the same

way as the case of the tube TK;\s;w in the previous subsubsection, except that we use the geometric decay in r
derived from integration by parts and the fact that the expanded pipe PKs;w [r] is far from the tube TKs;w, to
compensate the geometric growth in r that arises from the expanded pipes.
We �rst de�ne V Ks;w to be the vertical cone that is the complement of the union over 0 � r � s of the

expanded tubes TK;\s;w (r) in the quarter annulus A 1
4

�
0; 22s�w

�
, and set Vs �

s[
w=0

[
K2Gs�w[U ]

V Ks;w. Note that

the cone Vs will be �thin�if the positive constant Cn in De�nition 50 is large. Now we will repeat the above
proof of (9.33), but with expanded pipes PKs;w [r] in place of the tube T

K
s;w, to get (9.39). Indeed, the L

2 and
average L4 estimates (9.36) and (9.37) are now multiplied by an additional factor C�2�r� for some � > 0,
which percolates through the interpolation to give (9.39).
However, we must choose the constant Cn in De�nition 50 to be possibly even larger than it already is.

Namely, given a small positive constant " satisfying 0 < " < "p;n, choose Cn such that the vertical cone Vs
is so thin that the Direct Argument in Subsubsection 9.2.1 produces a bound that is C2"s times as large
as that obtained in Subsubsection 9.2.1,

(9.40) sup
a22Gs[U]

���DT (AaQsK)� f;Pn;�Vs gE��� . 2"s2�"0p;ns kfkLp kgkLp0 :
This bound will prove to be an acceptable estimate if we choose "0p;n > " > 0.
Next we adapt the arguments surrounding (9.38),

E�
2G

�2sAaQsK
f

Lp
�
jb j2�n� . 2�(2s�w)"

0
p;n kfkLp(Rn�1) ;

and (9.23), T 4n�1;�
I;� f


Lp(P I

s;0[r])
� CN2

�r(N�n
p )2�s"p;n2�sN

@N 4n�1;�
I;� f


Lp(Rn�1)

;

to conclude that

E�
2G[U]

T (AaQsK)� f
Lp(PK

s;w[r])
. CN2

�r(N�n
p )2�"p;ns

2�sN@N (QsK)� f
Lp[Rn�1]

;

for K 2 Gs�w [U ] and p >
2n

n� 1 :

Indeed, the following three steps are almost verbatim analogues of Steps 1(a), (b) and (c) above, and we
include the details only because of the importance of the estimates. For use in Step 2(a) below, we note that
the analogue of (9.22) in the case 0 � w � s is,

(9.41)

����Z
Rn�1

e�i�(x)�� (QsK)
�
f (x) dx

���� . CN2
�(r+s)N

Z
Rn�1

���@N (QsK)� f (x)��� dx; for � 2 PKs;w [r] :

Step 2(a): local expanded L2 estimate

We compute the norm of �2sQsK from L2
�
Rn�1

�
to L2

�
PKs;w [r]

�
. For I0 2 Gs [K], whose normal is en, we now

use the cylindrical convolver 'rs;2s�w (z) that has outer dimensions 2
�s�r�2w�2s, and we will multiply by a

modulation m (z) that translates the pipe whose convex hull is the tube [�2s+r; 2s+r]n�1�
�
�22s�w; 22s�w

�
to be positioned near PKs;w [r]. For convenience we momentarily set

(9.42)  (z) � m (z)'rs;2s�w (z) :
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We then have with using (9.34) that,�2sQsKf2L2�jb j2�n� =
Z
Rn

��� \(fsK)�;2s (�)���2 ���b (�)���2 d� = Z
Rn

\(fsK)�;2s �  (�) \(fsK)�;2s �  (�) d�

=
X

I;J2Gs[K]

Z
Rn

\f I�;2s �  (�) \fJ�;2s �  (�) d� =
X

I;J2Gs[K]

Z
S

f I�;2s �  (x)
�
fJ�;2s �  

�
(x) dx:

The supports of f I�;2s �  and fJ�;2s �  are essentially disjoint unless I � J . Next, if we de�ne

I�w [r] �
��
�2�s; 2�s

�n�1 � ��2w�2s+r; 2w�2s+r��+ en ;
and I�w [r] by rotation, then we have

(9.43)
��f I�;2s �  (z)�� . 2�rN ���DS�1�;�f; hn�1I;�

E��� 22s�w�r2sn�12 1I�w[r] (z) ;
since N integrations by part gains 2�(r+s)N as in (9.41), while N di¤erentiations

@N 4n�1;�
I;� f =

D
S�1�;�f; h

n�1
I;�

E
@Nhn�1;�I;� :

loses 2sN , all of which leads to

��f I�;2s �  �� �
��f I� �  �� . 2�rN df I�

d�n�1


1
�
�
1�(I)�n�1

�
� 'rs;2s�w (z)

� 2�rN
���DS�1�;�f; hn�1I;�

E��� 2sn�12 � (density)1I�w[r] (z) ;

where the quantity density satis�es,

(density) 2�s(n�1)2w�2s+r = (density) jI� [r]j =
1�(I�[r])�n�1 = 2�s(n�1)

=) density =
2�s(n�1)

2�s(n�1)2w�2s+r
= 22s�w�r:

Altogether then, using (9.43) and jI� [r]j = 2�s(n�1)2w�2s+r, we have�2sQsKf2L2�jb j2�n� . X
I2Gs[K]

Z
Rn

��f I�;2s �  (�)��2 d�
. 2�2rN

X
I2Gs[K]

Z
Rn

������DS�1�;�f; hn�1I;�

E��� 22s�w�r2sn�12 1I�w[r] (�)���2 d�
. 2�2rN

X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 �22s�w�r2sn�12 �2 jI�wj
= 2�2rN22s�w�r

X
I2Gs[K]

���DS�1�;�f; hn�1I;�

E���2 . 2�(2N+1)r22s�w kfk2L2(Rn�1) ;
which in terms of T (QsK)

�
f implies

(9.44)
T (QsK)� f2

L2(PK
s;w[r])

. 2�(2N+1)r22s�w
(QsK)� f2

L2(U)

Step 2(b): local average expanded L4 estimate
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We begin by using (9.41) to estimate the L4
�
PKs;w [r]

�
norm of �2sQsKf :

�2sQsKf4L4(PK
s;w[r])

=

Z
PK
s;w[r]

��� \(fsK)�;2s (�)���4 d� = Z
PK
s;w[r]

������
X

I2Gs[K]

\
(fsK)

I
�;2s (�)

������
4

d�

. 2�4(r+s)N
Z
PK
s;w[r]

������
X

I2Gs[K]

\@Nf I�;2s (�)

������
4

d� = 2�4(r+s)N
Z
PK
s;w[r]

������
X

I;J2Gs[K]

\@Nf I�;2s (�) \@NfJ�;2s (�)

������
2

d�

= 2�4(r+s)N
Z
PK
s;w[r]

������
X

I;J2Gs[K]

\@Nf I�;2s � @NfJ�;2sb@ (�)
������
2

d�:

Then we run the argument in Subsection 5.2, with notation as used there, with the above estimate up
until the estimate for 
t = 
t [K], where 2�t � dist (I; J) for I; J 2 Gs [K], i.e. 2�t . ` (K) = 2w�s or
s� w � t � s. Then for s� w < t < s we have


t [K] . 2�(4N+2)r
X

I;J2Gs[K]: dist(I;J)�2�t
2�s(n�2)2t

���D(S�;�)�1 f; hI;�ED(S�;�)�1 f; hJ;�E���2
. 2�(4N+2)r2�s(n�2)2t

X
I;J2Gs[K]: dist(I;J)�2�t

���D(S�;�)�1 f; hI;�E���4
. 2�(4N+2)r2�s(n�2)2t2(s�t)(n�1)

X
I2Gs[K]

���D(S�;�)�1 f; hI;�E���4 � 2�(4N+2)r2�t(n�2)2�s(n�2) (QsK)� f4
L4(S)

;

which gives

sX
t=s�w

	t [K] .
sX

t=s�w

t [K] . 2�(4N+2)r

sX
t=s�w

2�t(n�2)2�s(n�2)
(QsK)� f4

L4(S)

� 2�(4N+2)r2�(s�w)(n�2)2�s(n�2)
(QsK)� f4

L4(S)
. 2�(4N+2)r2�(2s�w)(n�2) kfk4L4(S) :

Similarly we obtain

	 . 2�(4N+2)r2�(2s�w)(n�2) kfk4L4(S) ;
and adding these results gives,

E�
2G

�2sQsKf4L4(�n) . 2�(4N+2)r2�(2s�w)(n�2) kfk4L4(S) :
In terms of T (QsK)

�
f this implies

(9.45) E�
2G

T (AaQsK)� f4
L4(PK

s;w[r])
. 2�(4N+2)r2�(2s�w)(n�2)

(QsK)� f4
L4(U)

Step 2(c): local expanded interpolation

Collecting the bounds (9.44) and (9.45) gives,T (AaQsK)� f
L2(PK

s;w[r])
. 2�(N+

1
2 )r2

2s�w
2 kfkL2(U) ;

E�
2G

T (AaQsK)� f
L4(PK

s;w[r])
. 2�(N+

1
2 )r2�

2s�w
2

n�2
2 kfkL4(U) :

Now we claim that an application of the interpolation Lemma 36 yields,

E�
2G

T (AaQsK)� f
Lp(PK

s;w[r])
. 2�(N+ 1

2 )r2�(2s�w)"
0
p;n kfkLp(Rn�1) :
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Indeed, the calculation at the end of the proof of Lemma 36 shows that if p > 2n
n�1 , then (with notation as

in that proof) � = 4
p � 1 and soh

2�(N+
1
2 )r2�

2s�w
2

n�2
2

i1�� h
2�(N+

1
2 )r2

2s�w
2

i�
= 2�(N+

1
2 )r2�

2s�w
2

n�2
2 2(

2s�w
2 + 2s�w

2
n�2
2 )�

= 2�(N+
1
2 )r2�

2s�w
2

n�2
2 2(

2s�w
2

n
2 )� = 2�(N+

1
2 )r2�(2s�w)"

0
p;n ;

where

"0p;n � 1

2s� w

�
2s� w
2

n� 2
2

�
�
2s� w
2

n

2

��
4

p
� 1
��

=
n� 2
4

� n

4

�
4

p
� 1
�
=
n� 1
2

� n

p
=
n� 1
2p

�
p� 2n

n� 1

�
:

This completes our proof of (9.39) in Step 2.

9.3.3. Step 3: square function argument. Momentarily �x 0 � w � s, and recall (9.39),

E�
2Gs[U]

T (AaQsK)� fp
Lp(PK

s;w[r])
. 2�rp

�
N� n

p0

�
2�(2s�w)p"p;n kfkpLp(U) ;

which in terms of the square function S�;KT;s �
�P

I2Gs[K]

���4�
I;�f

���2� 1
2

is

(9.46)
S�;KT;s fp

Lp(PK
s;w[r])

. 2�rp
�
N� n

p0

�
2�(2s�w)p"p;n kfkpLp(U) ;

For every K 2 Gs�w [U ], we have

1A+(0;22s�w) .
s�wX
r=0

1PK
s;w[r]

;

and so from (9.46) and
���S�T;sf ���2 = PK2Gs�w[U ]

���S�;KT;s f ���2 (where S�T;s � S�;UT;s ), we obtain using �p2�0 = p
p�2

that, S�T;sfp
Lp(A+(0;22s�w))

=

Z ���S�T;sf ���p 1A+(0;22s�w) =

Z ���S�T;sf ���p�2 X
K2Gs�w[U ]

���S�;KT;s f ���2 1A+(0;22s�w)

.
Z ���S�T;sf ���p�2 X

K2Gs�w[U ]

���S�;KT;s f ���2 s�wX
r=0

1PK
s;w[r]

=
s�wX
r=0

X
K2Gs�w[U ]

Z
PK
s;w[r]

���S�;KT;s f ���2 ���S�T;sf ���p�2

�
s�wX
r=0

X
K2Gs�w[U ]

 Z
PK
s;w[r]

���S�;KT;s f ���p
! 2

p
 Z

PK
s;w[r]

���S�T;sf ���p
! p�2

p

�
s�wX
r=0

24 X
K2Gs�w[U ]

 Z
PK
s;w[r]

���S�;KT;s f ���p
!35 2

p
24 X
K2Gs�w[U ]

Z
PK
s;w[r]

���S�T;sf ���p
35

p�2
p

;

and so from (9.46) we haveS�T;sfp
Lp(A+(0;22s�w))

.
s�wX
r=0

24 X
K2Gs�w[S]

2
�rp

�
N� n

p0

�
2�(2s�w)p"p;n

(QsK)� fp
Lp(U)

35 2
p "
2rn

Z
A+(0;22s�w)

���S�T;sf ���p
# p�2

p

.
s�wX
r=0

24 X
K2Gs�w[S]

2
�rp

�
N� n

p0

�
2rn

p�2
p

p
2 2�(2s�w)p"p;n

(QsK)� fp
Lp(U)

35 2
p S�T;sfp�2

Lp(A+(0;22s�w))
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since the overlap constant of the pipes
�
PKs;w [r]

	
K2Gs�w[S]

is 2rn. UsingX
K2Gs�w[S]

(QsK)� fp
Lp(U)

=
(QsU )� fp

Lp(U)
;

we conclude thatS�T;sf2
Lp(A+(0;22s�w))

.
s�wX
r=0

�
2
�rp

�
N� n

p0+
n
p�

n
2

�
2�(2s�w)p"p;n

(QsU )� fp
Lp(U)

� 2
p

.
s�wX
r=0

2
�r2

�
N� n

p0+
n
p�

n
2

�
2�(2s�w)2"p;n

(QsU )� f2
Lp(U)

. 2�(2s�w)2"p;n
(QsU )� f2

Lp(U)

provided N > n
p0 �

n
p +

n
2 . Thus we have proved the square function estimateS�T;sf

Lp(A+(0;22s�w))
. 2�(2s�w)"p;n

(QsU )� f
Lp(U)

;

which is (9.29) by Khintchine�s inequalities,S�T;sf
Lp(A+(0;22s�w))

� E�
2G[U]

T (AaQsU )� f
Lp(A+(0;22s�w))

:

9.4. Wrapup. We have established the norm expectation,

(9.47) E�
2G[U]

T (AaQsU )� f
Lp(B(0;22s))

. 2�"n;ps kfkpLp ;

for p > 2n
n�1 , which will play a critical role in completing the proof of our main theorem in the next section.

10. Completion of the proof of the probabilisitic extension Theorem 5

Consider the norm

 \�
(AaQsU )

�
f
�
�;2s


Lp
�
1RnnB(0;22s)�n

� for each �xed f 2 Lp, s 2 N and a 2 a, and

choose gf;s;a 2 Lp
0
(�n) such that

4J;�gf;s;a = 0 for J 2 D
�
B
�
0; 22s

��
;(10.1) \�

(AaQsU )
�
f
�
�;2s


Lp
�
1RnnB(0;22s)�n

� =
���DT �(AaQsU )� f�

2s
; gf;s;a

E��� and kgf;s;akLp0 (�n) = 1:
Since Blowerdisjoint

�
(AaQsU )

�
f; gf;s;a

�
and Blowerdistal

�
(AaQsU )

�
f; gf;s;a

�
each vanish by the assumption on the

Alpert support of gf;s;a in (10.1), and the de�nitions of the lower disjoint and distal forms, we have

E�
2G[S]

���DT �(AaQsU )� f�
2s
; gf;s;a

E��� = E�2Gs[S] ���DTA�(AaQsU )� f�2s ; gf;s;aE���
= E�

2Gs[S]

���Bbelow �T �(AaQsU )� f�
2s
; gf;s;a

�
+ Babove

�
T
�
(AaQsU )

�
f
�
2s
; gf;s;a

�
+Bupperdisjoint

�
T
�
(AaQsU )

�
f
�
2s
; gf;s;a

�
+ Bupperdistal

�
T
�
(AaQsU )

�
f
�
2s
; gf;s;a

�o
. sup

a
2�"n;ps

(AaQsU )� f
Lp(Rn)

kgf;s;akLp0 (Rn) ;

from estimates proved in previous sections. Thus we conclude from this and (9.47) that

E�
2G[S]

T (AaQsU )� f
Lp(Rn)

. E�
2Gs[S]

 \�
(AaQsU )

�
f
�
�;2s


Lp
�
1RnnB(0;22s)�n

� + E�2Gs[S]
 \�
(AaQsU )

�
f
�
�;2s


Lp(B(0;22s))

= E�
2Gs[S]

���DT �(AaQsU )� f�
2s
; gf;s;a

E���+ E�2Gs[S]  \�
(AaQsU )

�
f
�
�;2s


Lp(B(0;22s))

. sup
a
2�"n;ps

(AaQsU )� f
Lp(Rn)

kgf;s;akLp0 (Rn) + 2
�"n;ps

(QsU )� f
Lp(Rn)

. 2�"n;ps kfkLp(U) ;
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since the multipliers (AaQsU )
� and the conjugated projection (QsU )

� are both bounded on Lp by the square
function estimates (2.1). Finally we have

E�
2G[S]

T (AaQsU )� f
Lp(Rn)

= E�
2G[S]


1X
s=1

T (AaQsU )
�
f


Lp(Rn)

�
1X
s=1

E�
2G[S]

TS (AaQsU )� f
Lp(Rn)

�
1X
s=1

2�"n;ps kfkLp(U) . kfkLp(U) :

This completes the proof of (1.10), and hence that of Theorem 5.

11. Concluding remarks

The two weight testing methods used in this paper might also be applicable to the following open proba-
bilistic problems:

(1) proving a probabilistic analogue of the Bochner-Riesz conjecture or even the stronger local smoothing
conjecture. In the context of the (nonprobabilistic) extension conjecture, see Sogge [Sog] for a proof
that local smoothing implies Bochner-Riesz, and Tao [Tao1] for a proof that Bochner-Riesz implies
Fourier restriction,

(2) replacing the sphere in Theorem 5 with any smooth surface of nonvanishing Gaussian curvature, and
possibly with appropriate smooth surfaces of �nite type (and with altered indices p),

(3) replacing the Fourier kernel e�ix�� in Theorem 5 with a more general kernel 
 (x; �),
(4) to multilinear probabilistic variants of the extension conjecture,
(5) deciding the endpoint case q = p0 n+1n�1 when 2 < p < 2n

n�1 in (1.5),
(6) and �nally to the much more challenging problem of boundedness of the maximal spherical partial

sum operator in a probabilistic sense.

The main open problem is of course the full deterministic Fourier extension conjecture (1.1).
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